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Abstract. Syntactic discontinuities are very frequent in classical Latin and yet this data
was never considered in debates on how expressive grammar formalisms need to be to capture
natural languages. In this paper I show with treebank data that Latin frequently displays syn-
tactic discontinuities that cannot be captured in standard mildly context-sensitive frameworks
such as Tree-Adjoining Grammars or Combinatory Categorial Grammars. I then argue that
there is no principled bound on Latin discontinuities but that they display a broadly Zipfian
distribution where frequency drops quickly for the more complex patterns. Lexical-Functional
Grammar can capture these discontinuities in a way that closely reflects their complexity and
frequency distributions.

1 Introduction
Classical Latin, like classical Greek, is famous for its tolerance of syntactic discontinu-
ities. One example is shown in (1).

(1) quis1
who.nom

multa2
much.abl

gracilis1
slender.nom

te
you.acc

puer1
boy.nom

in
in

rosa2
rose.abl

perfusus
drenched.nom

liquidis3
liquid.abl

urget
press.3sg.pres

odoribus3
scents.abl

grato4,
delightful.abl

Pyrrha,
Pyrrha

sub
in

antro4
cave.abl

‘What slender boy, drenched with perfumes, presses you on a bed of roses,
Pyrrha, under the delightful cave?’ (Horace, Carmina 1.5)

This example features no less than four discontinuous noun phrases, as indicated
with subscript indices on the words. The syntactic dependencies inside these NPs are
marked with agreement in case (and number and gender, not shown in the glossing),
but not with word order.

Discontinuous NPs are in fact attested in Latin up to the twentieth century, as in (2)
from Dyvik (1968).
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(2) Mihi,
me.dat

Paulo,
Paul.dat

nullus
none.nom

est
is

terror
fear.nom

‘I, Paul, have no fear.’

Examples such as (2) are reminiscent of quantifier float, a type of discontinuity which is
found even in highly configurational languages such as English. While (2) is in fact the
only discontinuous NP in Dyvik (1968), the focus of this article is on the classical stage
of Latin, where many other types of discontinuities are attested, as shown already in
(1).

At the same time as Dyvik (1968) was composed, linguists discussedwhether natural
languages are context-free. The debate was sparked by the definition of the Chomsky
hierarchy in Chomsky (1956), which raised the question whether natural languages
could be described by context-free grammars. This was an open question throughout
the 1960s and 70s and it was not until the 1980s that the question was settled (in the
negative).¹

The classical languages played little role in this discussion. Occasionally, some Latin
examples were cited — for example, Ross (1967/1986, p. 74) used (1) to illustrate scram-
bling. There is no obvious characterization of the elements that can intervene between
the different parts of the NPs in this example, and if we assume that there is no the-
oretical upper bound on the intervening material, it looks like it could be possible to
construct an argument for the non-contextfreeness of natural language based on such
examples. Of course, assuming that there is no upper bound is a leap of faith that could
never be truly justified — but in that respect, Latin is not really different from English.
The common claim that finite state automata cannot model center-embedding also de-
pends on there being no theoretical upper bound on the level of embedding, and neither
in English nor in Latin can we observe infinite embeddings. In fact, corpus studies sug-
gest that the practical upper bound on levels of center embeddings is as low as three.
So the main reason for using a context-free grammar to deal with center-embedding
is theoretical simplicity and elegance, as pointed out by Harris (1957): “If we were to
insist on a finite language, we would have to include in our grammar several highly ar-
bitrary and numerical conditions — saying, for example, that in a given position there
are not more than three occurrences of and between N”.

Similar considerations would apply to Latin discontinuities. However, to the extent
that Latin examples featured in the scholarly discussion, scholars did not object to
them because their unboundedness could not be demonstrated. Instead, Pullum (1982)
argued that (1) comes from the poet Horace, who “is noted for stretching tendencies
in the living Latin language beyond all grammatical limits”. And so no one attempted
to build an argument based on classical data. Another reason for suspicion, no doubt,
was the lack of hard facts concerning the extent of syntactic discontinuity in a dead

1 See Pullum (1986) for a fascinating account of the debate.
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language like Latin. The Latin grammatical tradition has been content to establish that
word order is ‘generally free’ (not just in poetry, but also in prose) and to investigate the
stylistic usage of discontinuity. Moreover, word order data from Greek and Latin used
not to be very accessible. As shown in Haug (2015), it used to be the case that scholars
could not even agree on the frequencies of basic word orders in Ancient Greek – never
mind providing an account of them.

2 So how complex is natural language really?
Research in the Generalized Phrase Structure Grammar (GPSG) framework in the early
1980swas to a large extentmotivated by the desire to keep the complexity of the forma-
lism low and develop context-free analyses of seemingly non-context free phenom-
ena such as long distance dependencies (Gazdar 1981). That program imploded when
Shieber (1985) and Culy (1985) showed that there are phenomena in natural language
that cannot be captured in a context-free grammar. There were two main responses to
this discovery: either one tried to extend context-free formalisms as little as possible
while achieving coverage of demonstrably non-context free phenomena such as the
cross-serial dependencies from Dutch and Swiss German discussed in Shieber (1985),
leading to so-called mildly context-sensitive formalisms such as (Lexicalized) Tree Ad-
joining Grammar (LTAG) and Combinatory Categorial Grammar (CCG); or one gave
up (almost) completely on the concern about weak generative capacity, as in Lexical
Functional Grammar (LFG) and Head Driven Phrase Structure Grammar (HPSG). A
natural question to ask, then, is “Who was right?”. Is it possible to keep the algorith-
mic complexity of the parsing problem low while maintaining good coverage of the
data, as measured in modern treebanks?

Answering that question requires a detour into dependency grammar, since most
treebanks these days – and in particular the Latin ones that we will look at here – are
based on dependencies rather than phrase structures or CCG derivations. Fortunately,
there are formal results that relate the complexity of formalisms like CFGs, LTAGs and
CCGs to that of dependency grammars with various restrictions on non-projective (i.e.
discontinuous) dependencies.

2.1 Measuring discontinuity in a dependency treebank
In order to study discontinuities in dependency trees, we need to introduce some ter-
minology. The projection of a node in a dependency tree is its yield, i.e. the set of nodes
in the transitive, reflexive closure of dominance, arranged in linear order. A gap is a
discontinuity in a projection, and the gap degree of a node is the number of gaps in its
projection. An equivalent measure is the block degree, i.e. the number of continuous
blocks in the projection of a node, which will always be the gap degree + 1. Consider
the dependency tree in Figure 1. The gap degree of mihi is 0, for its projection [mihi,
Paulo] is uninterrupted. By contrast, the gap degree of terror is 1, for its projection
[nullus, terror] is interrupted by est. Alternatively, we may say that terror has block
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mihi Paulo nullus est terror

root

subj

mod

iobj

appos

Figure 1: Dependency tree for (2)

Jan Piet Marie zag helpen zwemmen

root
subj

comp comp

subj subj

Figure 2: Dependency tree for (4)

degree 2, for it consists of the two blocks [nullus] and [terror]. Finally, we note that
we may also talk about the gap degree of a dependency tree, which is defined as the
highest gap degree among its nodes.

For our purposes, it will also be useful to study gap depth, which we define as in (3).

(3) A node d in the projection of r introduces a discontinuity in r iff d is in a
different block b from r and there is no node in b that dominates d. The depth
of the gap introduced by d is the number of edges between d and r. The gap
depth of r is the maximum depth of a node that introduces a discontinuity in r.

In Figure 1, the gap depth of terror is 1, as the discontinuity is introduced by its direct
dependent nullus. Let us now look at a deeper gap in a classic example of cross-serial
dependencies in Dutch.

(4) (…dat)
that

Jan
Jan

Piet
Piet

Marie
Marie

zag
see-pst

helpen
help.inf

zwemmen
swim.inf

‘(…that) Jan saw Piet help Marie swim.’

The nodes helpen and zwemmen both have gap degree 1. The projection of helpen has
the two blocks {Piet, Marie} and {helpen, zwemmen}. Both Piet andMarie introduce dis-
continuities in the projection of helpen, since neither dominates the other. The depth
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of those discontinuities are 1 and 2 respectively and hence the gap depth of helpen
is 2. Thus the gap depth captures the fact that not only is helpen discontinuous, but
it also dominates a discontinuous dependent without resolving the discontinuity. In-
tuitively, then, gap depth captures embedding of discontinuities e.g. in long-distance
extraction, which is generally thought to be associated with human processing diffi-
culty (see e.g. Gibson 2000). Gap depth has to my knowledge never been considered in
measures of non-projectivity in dependency treebanks such as Kuhlmann and Nivre
(2006), Havelka (2007) or Maier and Lichte (2011), but we will see that corpus evidence
suggests this measure is useful.

2.2 Dependency structures and other grammatical formalisms
While most modern treebanks are based on dependencies, most grammatical theo-
ries are not. One early and fairly well-known result connecting dependency grammar
to other grammatical formalisms is due to Gaifman (1965) and shows that projective
dependency grammars, i.e. dependency grammars that allow no discontinuities, are
weakly equivalent to context-free grammars. However, since the focus here is pre-
cisely on discontinuities, that result is of little value for us.

Multiple context-free grammars (MCFGs), also known as linear context-free rewrit-
ing systems, have emerged as a powerful tool to study complexity questions in the
range of the Chomsky hierarchy between context-free grammars and full-blown
context-sensitive grammars. Kuhlmann (2013) has established connections between
dependency grammars and MCFGs which yield a close correspondence between the
non-projectivity of the dependency trees admitted by a grammar on the one hand,
and the parsing complexity of the grammar on the other. In the following, we briefly
review these results as a background for what follows.

The MCFG formalism is a generalization of CFG which retains ordinary CFG pro-
ductions for the expression of categorial structure, but uses explicit yield functions to
compute the yield of the mother node from the yields of the daughters. In an ordinary
CFG, yield computation is conflated with category formation: a rule such as DP → D
NP says both that the category DP is formed of a D and an NP, and that the yield of
the resulting DP is formed by concatenating the yields of D and NP. In effect, then, a
CFG can be seen as an MCFG with concatenation as the only yield function.²

To allow for greater expressivity, MCFG allows yields to be tuples of strings. For
example, we may want to say that the yield of DP is a pair (2-tuple) consisting of the
yields of D and NP.This pair will then be the input to further yield functions that apply
to productions with DP on the right-hand side. More generally, we may allow yields
to be n-tuples of strings.

For our purposes, it is important to note that there is a close correspondence between
yield components in an MCFG and blocks in a corresponding dependency structure.
We can extract MCFG rules from dependency trees, as shown in Kuhlmann (2013),

2 See Clark (2014) for an accessible introduction for linguists.
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appos → f() f = ⟨Paulo⟩
mod → g() g = ⟨nullus⟩
iobj → h(appos) h = ⟨mihi x1⟩
subj → i(mod) i = ⟨x1,terror⟩
root → j(iobj subj) j = ⟨x1y1 est y2⟩

Table 1: Rules extracted from the tree in Figure 1

where a formal exposition is given. Here I just provide an intuitive understanding of
how the tree in Figure 1 gives rise to the rules in Table 1.

Looking at Paulo in Figure 1 we see that it has no dependents, hence the right-hand
side of the first rule is a constant function which fixes the yield to the string Paulo,
and similarly for nullus. For mihi, things are a bit more interesting: it takes an appos
argument, and hence its yield depends on the yield of that argument. Concretely, the
yield of the node mihi is computed by concatenating the string mihi with the yield of
the appos argument, which is represented with x1 according to the convention that
we use x for the yield of the first argument and y for the yield of the second argument,
and subscript those variables with an index referring to components of the yield. In
this case, the yield of appos has only one component, so we use x1. Also terror takes
an argument, a mod, but in this case, the resulting yield has two components, one
consisting of the yield of the mod and one consisting of the string terror. Finally, the
verb takes two arguments, subj and iobj. The yield is constructed by concatenating
the yield of the iobj(i.e. x1), the first component of the subj(i.e. y1), the string est, and
the second component of subj(y2).

For our purposes, the primary interest of this construction lies in the fact that it
provides a link between dependency treebanks and the required expressivity of corre-
sponding grammars, as investigated in Kuhlmann (2013). On the one hand, the yield
components correspond directly to blocks found in the treebanks. And on the other
hand, the complexity of an MCFG grammar is easily read off the yield functions: The
parsing complexity of a yield function equals the sum of the number of components
in its input and output yields. For example, the parsing complexity of j in Table 1 is 4,
as its two inputs have 1 and 2 component yields and it produces a 1 component yield.
This yields a two-dimensional complexity hierarchy, as the complexity depends both
on the number of arguments and the number of yield components of these arguments.
In the presence of only wellnested discontinuities, we actually get a simple complexity
hierarchy because any wellnested MCFG can be binarized without increasing the gap
degree. A wellnested discontinuity is one whose projection does not interleave with
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another non-overlapping projection.³ (5) gives an example of an illnested discontinuity
from Latin poetry.

(5) aurea
golden.nom

purpuream
purple.acc

subnectit
bound

fibula
clasp.nom

vestem
cloak.acc

‘a golden clasp bound her purple cloak’ (Vergil, Aeneid 4.139)

The projections of the subject and the object do not overlap (neither dominates the
other), but they interleave, producing an illnested discontinuity. MCFGs that generate
only wellnested dependencies are called wellnested MCFGs. Since they can be bina-
rized without increasing the gap degree, their parsing complexity is uniquely deter-
mined by their gap degree. We refer to an MCFG where no argument has more than k

components in its yield as a k-MCFG.
There are several results linking linguistically motivated grammatical formalisms to

MCFGs. For example, TAG is weakly equivalent to a wellnested 2-MCFG. The same
result applies to ‘classical’ CCG and linear indexed grammars (Aho 1968), since those
formalisms are weakly equivalent to TAG. However, modern lexicalized CCG (i.e. the
current version where (restrictions on) the combinators are not grammar-specific but
all linguistic variation is captured in the lexicon) is known to be strictly less powerful
than TAG (Kuhlmann, Koller, et al. 2015).

The equivalence between wellnested 2-MCFGs and established grammatical for-
malisms takes on significance in the light of empirical investigations on dependency
treebanks. For example, Kuhlmann (2013) shows that by restricting ourselves to well-
nested trees of gap degree at most 1, i.e. trees describable by a wellnested 2-MCFG, we
lose only between 0.1% (Arabic) and 0.9% (Turkish) of the trees in the CoNLL 2006 tree-
banks. This suggests that formalisms with the power of TAG are adequate for natural
languages. Similar results have been reported by others and will also be shown below
for the Universal Dependencies treebanks. But we will also see that Latin behaves in
a crucially different way.

2.3 Complexity in LFG
Any LFG grammar that determines an upper bound n on the number of c-structure
nodes corresponding to a given f-structure (a so-called ‘finite copy LFG’) can be trans-
lated into a weakly equivalent MCFG. This gives us polynomial time parsing, because
parsing with a (wellnested) k-MCFG can be done in time O(n3k). But in the general
case, parsing with an LFG grammar is NP-complete, as can be shown with a straight-
forward reduction from the 3SAT problem, i.e. the problem of determining whether a
formula of propositional logic in conjunctive normal form where each clause is limited
to at most three literals is satisfiable: we use c-structure rules to make sure each clause

3 For a formal definition, see e.g. Kuhlmann (2013, p. 377).



82 Dag Haug

contains at least one true literal and use the f-structure to keep track of the assignment
of truth values across clauses.⁴

It is worth pointing out that the universal recognition problem for MCFGs is also
NP-complete because, although any given MCFG is a k-MCFG, MCFG as a formalism
does not bound that k. Put in other words, the difference between MCFGs and LFGs
is that for any given (finite) instance of the 3SAT problem with n clauses, we can
construct an MCFG that solves it, whereas we can write a general LFG that can solve
any instance of the 3SAT problem.

If we think of the relations between different instances of the same literals in a
3SAT problem as analogues to discontinuous dependencies in linguistics, this means
an LFG grammar can deal with an unbounded number of discontinuous dependencies
across unbounded distances. We can ask ourselves whether there is any need for the
expressivity that LFG gives us. As we will see in section 3.1, the answer is from one
point of view negative: we can get extremely good coverage on existing dependency
treebanks with a relatively low bound on the discontinuities. Nevertheless, it is worth
making the point that the extra expressivity provides for extra linguistic insight. We
will now show that this point holds even as we move up the complexity ladder from
NP-complete to undecidable.

Undecidability was not a property of LFG originally. While unification grammars in
general are Turing-equivalent and hence have an undecidable parsing problem, Kaplan
and Bresnan (1982) avoided undecidability by restricting valid derivations as in (6).

(6) A c-structure derivation is valid if and only if no category appears twice in a
nonbranching dominance chain, no nonterminal exhaustively dominates an
optionality ϵ, and at least one lexical item or controlled e appears between two
optionality ϵ’s derived by the same rule element.

By disallowing nonbranching dominance chains, this constraint ensures that for any
string the size and number of c-structure derivations is bounded as a function of the
length of the string. The constraint seems well-motivated: after all, what could be the
linguistic motivation for derivations in which e.g. some NP dominates another NP in
a nonbranching structure?

As it turns out, such structures can be motivated. In Bresnan, Kaplan, et al. (1982),
it was argued that cross-serial dependencies in Dutch cannot be given a linguistically
motivated analysis in a context-free grammar. Instead, the authors proposed to give
the sentence in (4) the c-structure in Figure 3.

This c-structure does not directly capture the object relation between Piet and zag
or between Marie and helpen. Instead, the relationship is captured with functional an-
notations on the VP and V̄ nodes which ‘match up’ the two branches in the f-structure
and give the correct grammatical relations. So,Marie is the object of helpen by virtue of

4 See for example Francez and Wintner (2012, pp. 241–243) for details of the construction.
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S

↑=↓
VP

↑=↓
V̄

(↑ xcomp)=↓
V̄

(↑ xcomp)=↓
V̄

V

zwemmen

V

helpen

V

zag

(↑ xcomp)=↓
VP

(↑ obj)=↓
NP

Marie

(↑ obj)=↓
NP

N

Piet

(↑ subj)=↓
NP

N

Jan

Figure 3: C-structure of (4)
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S

V̄

V̄

V̄

V

zingen

V

willen

V

heeft

VP

VP

NP

liedjeeen

NP

N

Jan

Figure 4: C-structure of (7)

being embedded under the same number of VP nodes as helpen is under V̄ nodes. This
kind of analysis is based on what Maxwell and Kaplan (1996) call ‘zipper unification’.

However, as pointed out by Johnson (1986), this analysis actually leads to non-
branching dominance chains in cases where intermediate verbs in the structure are
intransitive, as in (7) with the c-structure in Figure 4.

(7) (…dat)
that

Jan
Jan

een
a

liedje
song

heeft
has

willen
want.inf

zingen
sing.inf

‘(…that) Jan has wanted to sing a song.’

So, if we want to keep the analysis from Bresnan, Kaplan, et al. (1982) we must give up
the offline parsability constraint and hence the decidability of the LFG formalism. On
the other hand, an alternative analysis was also proposed (Zaenen and Kaplan 1995),
where NPs inside VP get the functional uncertainty annotation (↑ xcomp* obj) = ↓,
rather than just (↑ obj) = ↓. From a linguistic point of view, there are several problems
with this analysis: First, it is unclear how we can ever provide a principled structure-
function mapping if we allow non-local GF assignments like this. And second, in order
to capture the word order facts, we need complex f-precedence constraints.

And in fact, what happened in this case is that the analysis of Bresnan, Kaplan, et al.
(1982) is still well-known and cited, whereas the alternative analysis based on non-
local GF assignment and functional precedence is more or less forgotten. Both the first
and the second edition of Bresnan’s LFG textbook (Bresnan 2001; Bresnan, Asudeh,
et al. 2015) include exercises that ask the student to reproduce Bresnan, Kaplan, et al.
(1982) — even if a generalization of this analysis to intransitive verbs (not used in the
exercise) would not even be LFG as defined in Kaplan and Bresnan (1982). In other
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words, while ‘intuitive’ is a subjective notion, history lends some justification to the
claim that the original analysis is more intuitive than the later one.

There are some lessons we can draw from this. First, the ban on nonbranching dom-
inance chains looks stipulative: it can be removed from the definition of LFG without
changing anything else, albeit at the cost of undecidability. An analysis like that in
Figures 3 and 4 does not ‘feel’ substantially un-LFG-like. Second, the original analy-
sis seems linguistically more informative than the alternative in that it captures the
word order generalizations in an intuitive way while preserving locality of GF assign-
ment. Again, this is subjective, but the fact that the analysis gets cited and is used in
textbooks shows that the intuition is widespread.

Taken together, these two observations suggest that a more expressive grammatical
formalism can lead to more linguistically adequate analyses — even if those analyses
do not actually exploit that expressivity in a crucial way. In our case, the problem
with unary branching dominance chains is that there will be no upper bound on the
length of the unary VP chain in Figure 4. But chains of unbounded length are of course
not crucial to the analysis. We only need VP–VP chains of a length corresponding to
the number of consecutive intransitive verbs in the V̄-chain. For practical purposes,
5 will be more than sufficient. And even from a theoretical perspective, it is not clear
that banning any category α from dominating five instances of α in a nonbranching
dominance chain is any more objectionable than banning it from dominating a single
instance, as Bresnan and Kaplan did with (6).

3 Empirical investigation
3.1 Quantitative data
Let us now have a look at how discontinuities actually distribute in Latin treebanks. To
be able to compare across languages we use the Universal Dependencies (UD) corpora,⁵
in particular the version 2 release. This dataset contains three Latin treebanks, the
Perseus treebank (Bamman and Crane 2011), the PROIEL treebank (Haug and Jøhndal
2008) and the Index Thomisticus Treebank (Martens and Passarotti 2014).

Table 2 shows the distribution gap degree and depth across all languages in the UD
corpora.⁶ As we can see, the vast majority of edges, 97.3%, are projective. Still, this
means that the number of non-projective edges is high enough that we need to be able
to deal with them in parsing. But at least from a practical standpoint, we can ignore
everything but the simplest type of gap: restricting ourselves to edges of gap degree
and depth ≤ 1 yields a coverage of 99.7%.

When we get to Latin, the picture is different. First of all, the number of simple
(degree 1) non-projectivities is much higher: 9.1% of edges. More interesting is the fact

5 http://universaldependencies.org/
6 There are a few outliers of degree or depth > 3 that are not shown in the tables.

http://universaldependencies.org/
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Gap degree Gap depth
0 1 2 3

0 2572961 (97.3%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
1 0 (0.0%) 63729 (2.4%) 4856 (0.2%) 616 (0.0%)
2 0 (0.0%) 1584 (0.1%) 1095 (0.0%) 165 (0.0%)
3 0 (0.0%) 44 (0.0%) 56 (0.0%) 25 (0.0%)

Table 2: Gap degree and depth in the UD 2.0 corpora

Gap degree Gap depth
0 1 2 3

0 60430 (90.4%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
1 0 (0.0%) 5556 (8.3%) 496 (0.7%) 61 (0.1%)
2 0 (0.0%) 134 (0.2%) 123 (0.2%) 17 (0.0%)
3 0 (0.0%) 5 (0.0%) 5 (0.0%) 1 (0.0%)
4 0 (0.0%) 0 (0.0%) 1 (0.0%) 0 (0.0%)
9 0 (0.0%) 0 (0.0%) 1 (0.0%) 1 (0.0%)

Table 3: Gap degree and depth in the UD 2.0 Latin-PROIEL treebank

that 0.4% of edges have gap degree 2 and thus reflect dependencies that cannot be
captured in a TAG (or a forteriori, in a CCG).

This becomes clearer if we think about tree coverage, as shown in Table 4 for a
select number of treebanks.⁷ Here we see that by restricting ourselves to trees where
the highest gap degree is 1, we lose 1.8% of the trees in the PROIEL treebank, compared
to zero loss in the Norwegian Bokmål treebank and 0.3% loss in the Czech treebank.
Overall in the UD treebanks, 0.6% of trees contain an edge of gap degree 2, but it is
worth pointing out that almost three quarters of these trees are found in one of the
Ancient Greek and Latin treebanks, which only make up roughly a tenth of the trees.
So there clearly is something special about these languages.

Finally, we look at the illnestedness numbers in Table 5. As has been observed several
times in the literature, illnestedness is a strong constraint on discontinuities in most
languages. We see that this constraint is strong also in the PROIEL corpus of Latin (and
Greek), but not in the Perseus corpora. Aswith non-projective dependencies in general,
this is likely due to due to the large portions of poetry in this treebank. In (5) we saw
an example of an illnested dependency from Vergil. And this was in fact no accident,

7 What I have listed as Anc.Gr.-Perseus and Latin-Perseus appear in UD as simply Ancient Greek and
Latin, since they were the first treebanks for these languages. These treebanks generally have a higher
degree of non-projectivity because they consist mostly of poetry.
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0 1 2 3
Anc.Gr.-Perseus 4738 (37.6%) 6983 (55.4%) 833 (6.6%) 46 (0.4%)
Anc.Gr.-PROIEL 9823 (61.9%) 5515 (34.8%) 493 (3.1%) 34 (0.2%)

Czech 3480 (87.9%) 468 (11.8%) 11 (0.3%) 0 (0.0%)
Latin-Perseus 793 (59.5%) 511 (38.3%) 27 (2.0%) 2 (0.2%)

Latin-ITTB 10367 (62.9%) 5805 (35.2%) 310 (1.9%) 9 (0.1%)
Latin-PROIEL 11213 (73.2%) 3844 (25.1%) 254 (1.7%) 11 (0.1%)

Norw.-Bokmaal 1173 (92.5%) 95 (7.5%) 0 (0.0%) 0 (0.0%)
All treebanks 353194 (87.2%) 49151 (12.1%) 2572 (0.6%) 121 (0.00%)

Table 4: Trees by gap degree in selected UD treebanks

Illnested Wellnested
Ancient_Greek-Perseus 1.5% 98.5%
Ancient_Greek-PROIEL 0.3% 99.7%

Czech 0.1% 99.9%
Latin-Perseus 3.8% 96.2%

Latin-ITTB 0.2% 99.8%
Latin-PROIEL 0.2% 99.8%

Norwegian-Bokmaal 0.1% 99.9%
Sum 0.1% 99.9%

Table 5: Wellnestedness

but a so-called ‘golden line’, a rhetorical pattern first discovered by Edward Burles in
1652: “If the Verse does consist of two Adjectives, two Substantives and a Verb only, the
first Adjective agreeing with the first Substantive, the second with the second, and the
Verb placed in the midst, it is called a Golden Verse.” It is not clear whether Latin poets
in fact preferred illnested dependencies for their own sake, or whether their frequency
results from other, conspiring factors. Whatever the motivation, it is interesting that
the poets regularly produced these illnested structures which are so rare in prose.

The numbers reported in this section are based on data converted to Universal De-
pendencies. To my knowledge there is no in-depth study of discontinuity based on the
original Perseus or PROIEL data for Latin, but there is a study on Greek (Mambrini
and Passarotti 2013), which finds only 25.2% projective trees, compared to 37.6% in the
UD version of the same treebank. It should be noted that the UD conversion only in-
cludes a subset of the original treebank due to conversion problems. One possibility is
that the conversion script was particularly likely to fail on non-projective structures,
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which would explain why the projectivity rate is higher in the converted UD data. The
illnestedness degree is also lower, at 1.5% versus 2.6% in the original version.

3.2 Examples
Let us now have a closer look at some examples of the discontinuities we find in
Latin. An important first observation is that a large number of them arise from second-
position clitics, which normally appear after the first prosodic word, even if that breaks
up a syntactic constituent. The frequency of this phenomenon contributes to the num-
ber of gap degree 2 trees, since it is then enough to have one other gap resulting from
some other process. An example of this is (8).

(8) eo
this.abl

autem
but

die
day.abl

credo
I.believe

aliquid
something.acc

actum
done.acc

in
in

senatu
senate.abl

‘But I believe that something will be done in the senate today.’ (Cic. Att. 5.5.1)

In this case, we have a normal long distance dependency, where eo die has been dis-
placed out the embedded clause aliquid actum in senatu, resulting in one gap. When
the clitic then lands inside the fronted constituent, we get a second gap. Such exam-
ples are controversial as illustrations of the syntactic complexity of a language, since
it is not clear to what extent clitic positioning in Latin is syntactically conditioned:
prosodic factors are clearly also important. From a parsing perspective, however, we
need to have some way of dealing with clitics, so a more reasonable objection may be
that the set of clitic strings is finite, i.e. there is only a finite number clitics and licit
combinations of clitics that can occur in the position of autem in (8). Therefore, we can
deal with them without using the full power of a formalism that can derive syntactic
discontinuities.⁸

However, trees of gap degree 2 are by no means restricted to those where clitics
account for one of the gaps. Example (9) shows a discontinuous NP multa …genera
ferarum, with an extraposed relative clause.

(9) Multa
many.acc

que
and

in
in

ea
it.abl

genera
kinds.acc

ferarum
beasts.gen

nasci
be born

constat
it.is.certain

quae
which.nom

reliquis
other.abl

in
in

locis
places.abl

visa
seen.nom

non
not

sint
are.sbjv

‘It is certain that many kinds of beasts are born in it which have not been seen
in other places’ (Caes. Gal. 6.25.5)

(10) shows another example, where we get gap degree 2 because the genitive is dis-
placed from its head noun at the same time as the wh-word quantam is fronted alone.

8 An approach based on MCFGs can still be more perspicuous and insightful from a linguistic point of
view, see Goldstein and Haug (2016). Even so, it is likely that such a grammar could be ‘compiled’ to a
computationally more tractable grammar by exploiting the finiteness of the set of clitic strings.
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(10) quantam
how large.acc

porro
besides

mihi
me.dat

exspectationem
expectation.acc

dedisti
give.2s.prf

convivi
this.gen

istius
guest.gen

ἀσελγοῦς
wanton.gen

‘Besides, how large expectations you gave me about this wanton guest!’ (Cic.
Att. 2.12.2)

Example (11) shows another common pattern, where one of the gaps results from a
‘postponed’ coordination.

(11) Munitis
fortified.abl

castris
camp.abl

duas
two.acc

ibi
there

legiones
legions.acc

reliquit
left.3s.prf

et
and

partem
part.acc

auxiliorum
auxiliaries.gen

‘With the camp fortified, he left two legions and a part of the auxiliaries there.’
(Caes. Gal. 1.49.4)

Finally, since gap degree 2 examples arise naturally, even without clitics, there are
examples where a clitic intrudes in an otherwise degree 2 discontinuity, yielding gap
degree 3. And there are a few gap 3 examples without clitics. We refrain from showing
examples here, as they inevitably get quite complex.

When it comes to illnestedness, we saw in the previous section that examples are
extremely rare in the PROIEL treebank. Nevertheless, it is worth pointing out that
the ones that do occur look perfectly ‘natural’, in the sense that it is hard to come up
with alternative analyses that make linguistic sense and capture the sentence structure
without an illnested dependency. (12) shows an example where the subject appears in-
side the object NP, at the same time as there is an extraposed relative clause belonging
to it.

(12) Magnam
great.acc

Caesarem
Caesar.acc

iniuriam
injustice.acc

facere
do

qui
who.nom

suo adventu
by his arrival

…

‘(He said that) Caesar was doing a great injustice, who by his arrival …’ (Caes.
Gal. 1.36.4)

Taken togetherwith themetrical data discussed in section 3.1, this suggests that illnest-
edness is not ungrammatical in Latin, although it clearly is strongly dispreferred (in
prose).

4 So how complex is Latin really?
We can clearly conclude that Latin is not a tree-adjoining language. As Table 4 shows,
there are simply too many trees of gap degree> 1, and examples such as (8)–(11) show
that these arise through combinations of well-established processes of Latin grammar.
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However, Table 4 also shows that we do not really need the ability of LFG to trans-
port unbounded amounts of features across unbounded distances in the tree to cap-
ture the data found in Latin treebanks: Trees of gap degree 3 are already very rare.
Nevertheless they arise through well-defined grammatical processes (and are not, for
example, artefacts of the annotation scheme). It is therefore impossible to define a the-
oretical upper bound on gap degree in Latin.

In a way, the situation is analogous to what we see in center-embedded recursion.
We can deal with finite levels of center-embedded recursion in a regular (finite state)
grammar by adding states to the automaton. And center-embedding of more than three
levels turns out to be nonexistent in corpora (Karlsson 2007), so for practical purposes,
the finite state approach could work. But linguists prefer context-free grammars both
because it is hard or impossible to define a theoretical upper bound on the levels of
center-embedding and, crucially, because analyses cast in terms of a CFG are linguisti-
cally more perspicuous. A similar argument applies, I contend, to syntactic discontinu-
ities: although we could deal with them in practical terms – at least when we confine
the attention to the texts in the existing Latin treebanks – by adopting a k-MCFG as
our formalism for some (quite small) k, it is hard to argue theoretically for any par-
ticular k and – as we have already seen – analyses that are cast in more expressive
formalisms can turn out to be more intuitive. In other words, we can adapt Harris’ ar-
gument for assuming infinite levels of center embeddings to unbounded discontinuous
dependencies: fixing a k is a “highly arbitrary and numerical condition” that has no
place in linguistic theory. In that respect, 2 – the number that (restricted to wellnested
dependencies) would give us the expressive power of TAG or classical CCG – is no
different from any other number.

This gives us an argument for adopting LFG as a formalism even if that is expressive
overkill in practical terms.⁹ And although LFG does not provide an obvious way of
restricting discontinuities, we will see that it does provide a way of analyzing them
that gives us a natural metric for discontinuity complexity in the form of the number
of reentrancies they require. Consider first the mock Latin sentence in (13).

(13) Maximilianus
Max.nom

trusit
pushed

bonum
good.acc

Fredericum
Fredrick

Maximilian pushed good Fredrik

In LFG terms, this can be analyzed with the c- and f-structure in Figure 5. A charac-
teristic feature of this is that the ϕ mapping from maximal projections (S and NP) is
injective: there are no reentrancies, i.e. distinct maximal projections mapping to the
same f-structure.

9 There may be an intermediate formalism available: As shown by Kallmeyer and Satta (2009), Tree-
Tuple Multiple Component TAGs (TT-MCTAGs) can describe German scrambling and have a polynomial
parsing algorithm.



Syntactic discontinuities in Latin — A treebank-based study 91

S1

↑=↓
I8

trusit
(↑ pred)=‘push ⟨subj, obj⟩’

(↑ subj case)=nom
(↑ obj case)=acc

(↑ gf)=↓
NP4

↑=↓
N7

Fredericum
(↑ pred)=‘Fred.’
(↑ case)=acc

↓ ∈ (↑ adj)
AdjP5

↑=↓
Adj6

bonum
(↑ pred)=‘good’

(adj ∈ ↑) case=acc

(↑ gf)=↓
NP2

↑=↓
N3

Maximilianus
(↑ pred)=‘Max.’
(↑ case)=nom



pred ‘push ⟨subj, obj⟩’
subj

[
pred ‘Max.’

]
obj

pred ‘Fred.’

adj
{[

pred ‘good’
]}




Figure 5: C- and f-structure for (13)

Now consider what happens if we permute trusit and bonum to yield a discontin-
uous c-structure. If we want to avoid non-local assignment of grammatical functions,
the obvious way to achieve this is by using a c-structure embedding as in Figure 6.This
introduces a reentrancy: for this c-structure to yield the correct f-structure (namely the
same as in Figure 5), we must make sure that NP4 and NP8 map to the same f-structure,
i.e. gf on both these nodes must be resolved to the same grammatical function.¹⁰ In
other words, the syntactic discontinuity is mirrored by structural complexity in the
form of a reentrancy. Obviously, if we had yet another discontinuous dependent of
Fredericum that was discontinuous from bonum so that we had a gap degree 2 discon-
tinuity, we would need another reentrancy to capture that.

Now observe what happens if we have a deeper gap as in (14). This yields the c-
structure in Figure 7. We observe that the extra depth of the discontinuity yields an
extra reentrancy as compared with the otherwise similar discontinuity in Figure 6, for
to get the correct f-structure from Figure 7, we must map both NP4 and NP5 to the
same f-structures as NP9 and NP10 respectively.

(14) Maximilianus
Max.nom

boni
good.gen

trusit
pushed

Frederici
Fredrick.gen

filium
son.acc

Maximilian pushed good Fredrick’s son

10 In this particular example, case agreement will ensure that.
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S1

(↑ gf)=↓
NP8

↑=↓
N9

Fredericum
(↑ pred)=‘Fred.’
(↑ case)=acc

↑=↓
I7

trusit
(↑ pred)=‘push ⟨subj, obj⟩’

(↑ subj case)=nom
(↑ obj case)=acc

(↑ gf)=↓
NP4

↓ ∈ (↑ adj)
AdjP5

↑=↓
Adj6

bonum
(↑ pred)=‘good’

(adj ∈ ↑) case=acc

(↑ gf)=↓
NP2

↑=↓
N3

Maximilianus
(↑ pred)=‘Max.’
(↑ case)=nom

Figure 6: C-structure for permuted version of (13)

S1

(↑ gf)=↓
NP9

↑=↓
N12

filium
pred=‘son’
(↑ case)=acc

(↑ gf)=↓
NP10

↑=↓
N11

Frederici
pred=‘Fred.’
(↑ case)=gen

↑=↓
I8

trusit
pred ‘push ⟨subj, obj⟩’

(↑subj case)=nom
(↑obj case)=acc

(↑ gf)=↓
NP4

(↑ gf)=↓
NP5

↓ ∈ (↑ adj)
AdjP6

↑=↓
Adj7

boni
pred ‘good’

(adj ∈ ↑) case=gen

(↑ gf)=↓
NP2

↑=↓
N3

Maximilianus
pred=‘Max.’
(↑ case)=nom

Figure 7: C-structure for (14)
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The c-structure in Figure 7 clearly violates the principle in (6). Nevertheless, it is an
attractive analysis compared with, say, an analysis where AdjP6 would be directly em-
bedded under S and annotated with (↑ gf+) because that would introduce non-local
constraints and because Figure 7 wears its complexity on its sleeves, in the form of the
length of the unit branch under NP4. Like the analysis of Dutch cross-serial depen-
dencies, this relies on zipper unification. As pointed out by Maxwell and Kaplan (1996,
p. 24), zippers introduce computational complexity because they mean that depth of
f-structures that must be unified can grow as a function of the length of the sentence.
(In fact, because we allow a cyclic unit branch, it can grow even without the sentence
increasing in length.) But this is really a practical problem and as such it allows a prac-
tical solution, namely a brute force bound on the length of zippers. And that is where
the treebank data become interesting, for they suggest that this bound can be set quite
low.

5 Conclusion and challenge
In sum, we have seen that extant Latin treebanks display syntactic discontinuities that
require us to go beyond the capacity of well-known mildly context-sensitive grammar
formalisms such as CCG and TAG. It has already been argued on theoretical grounds
that these formalisms cannot capture data such as German scrambling (Becker et al.
1992). But as pointed out by Kuhlmann (2013), formalisms (weakly) equivalent to TAG
still have very good coverage on treebanks. That, however, is not the case in Latin
(and still less so in Ancient Greek), thereby verifying the inadequacy of TAG on actual
treebank data.

From a theoretical point of view, this means that trees of gap degree 1 have no
particular theoretical importance. Rather, the corpus data suggests that gap degrees
(and depths) have a Zipfian distribution that quickly decreases beyond 1. So there is no
theoretical reason to stay with k-MCFGs. And in fact we have seen that although LFG
parsing is intractable, the formalism reflects the complexity of syntactic discontinuities
in a rather nice and intuitive way, paving the way for empirical studies on how much
of the theoretically desired expressivity is actually needed for practical purposes.

One challenge remains: we have seen that illnested discontinuities are strongly dis-
preferred in most treebanks, with an exception for Latin poetry. But unlike gap degree
and depth, illnestedness does not correspond to any complexity in the LFG formalism.
In other words, LFG as it currently stands lacks the theoretical resources to express
the strong dispreference that we observe in corpora.
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