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Abstract. This paper presents a finite-state transducer (FST) for tokenizing and normaliz-
ing natural texts that are input to a large-scale LFG grammar for Wolof. In the early stage of
grammar development, a language-independent tokenizer was used to split the input stream
into a unique sequence of tokens. This simple transducer took into account general character
classes, without using any language-specific information. However, at a later stage of gram-
mar development, uncovered and non-trivial tokenization issues arose, including issues related
to multi-word expressions (MWEs), clitics and text normalization. As a consequence, the to-
kenizer was extended by integrating FST components. This extension was crucial for scaling
the hand-written grammar to free text and for enhancing the performance of the parser.

1 Introduction
This paper presents a finite-state transducer (FST) (Beesley and Karttunen 2003) that
acts as a tokenizer and a normalizer for Wolof¹ natural texts. Tokenization consti-
tutes an important prior task for various language processing applications, e.g. part-
of-speech tagging, parsing, information retrieval, information extraction, and machine
translation. All these language processing systems need input texts with definite word
boundaries. This task can be performed using various techniques, including e.g. rule-
based techniques (Kaplan 2005), statistical techniques (Yang and Li 2005) and lexical
techniques (Wu and Fung 1994). The tokenization approach proposed in this paper is
based on the use of finite-state rules to break up a stream of Wolof texts into individ-
ual tokens. The tokenizer is designed using the Xerox finite-state tool fst (Beesley and
Karttunen 2003).

The tokenization system is built within the broader context of an ongoing process
of creating language resources and tools for Wolof. This process is part of the Paral-
lel Grammar (ParGram) project (Butt et al. 2002) which is couched within the Lexical
Functional Grammar (LFG) framework. In related work, a Wolof Morphological An-
alyzer (WoMA) (Dione 2012), a large-scale LFG grammar and a treebank for Wolof

1 Wolof belongs to the Senegambian branch of the Niger–Congo language family mainly spoken in
Senegal, Gambia and Mauritania.
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have been constructed (Dione 2014a). Other related work describes parse disambigua-
tion techniques used for Wolof (Dione 2014b), including the integration of Constraint
Grammar (CG) models (Karlsson 1990) into probabilistic context-free grammar ap-
proaches to disambiguation (Dione 2014c).
The tokenizer is used as part of a finite-state transducer cascade (Kaplan et al. 2004)

that preprocesses the input sentences before they are parsed by the Wolof grammar.
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Figure 1: Anatomy of the Wolof parsing system

The parsing workflow is depicted in Figure 1. First, the input is tokenized and nor-
malized either by a deterministic tokenizer when the LFG parsing is combined with
CG disambiguation (Dione 2014c), or by a deterministic tokenizer when the syntactic
analysis is performed without CG disambiguation. The former tokenizer is referred to
as the CG tokenizer, while the latter is called the standard tokenizer. The only differ-
ence between the two tokenizers is their determinism. Next, morphological analysis is
carried out. The output of the morphology is either disambiguated prior to syntactic
analysis or directly fed into the standard LFG parser (i.e. without CG disambiguation).
Finally, the morpho-syntactic annotation is produced.
In the early stage of grammar development, a language-independent tokenizer was

used by the Wolof LFG system. However, as the development of the grammar pro-
gressed, the parsing system encountered various issues due to inappropriate tokeniza-
tion. For instance, a significant number of sentences withMWEs could not be parsed or
were not handled correctly. Likewise, the time needed to process sentences including
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words with clitics was growing due to parsing complexity. Hence, the need to inte-
grate language-specific information into the tokenization process arose naturally with
the aim to enhance coverage and quality as well as efficiency of the parser.
The remainder of this paper is organized as follows: Section 2 discusses the general

concept of tokens in Wolof and non-trivial tokenization issues found in this language.
Section 3 discusses the development of the tokenizer using finite-state technology. It
presents the language-independent tokenizer used at the early stage of grammar de-
velopment and describes the final transducer which integrates language-specific ap-
proaches to multi-word expressions and clitics into the tokenization process. Section
4 discusses issues related to text normalization. Section 5 reports on results of experi-
mental evaluation of the tokenizer. Section 6 concludes the discussion.

2 Wolof tokens
Tokenization can be defined as the process of breaking a stream of texts up into words,
symbols, or other meaningful elements called tokens. Accordingly, the process is as-
sumed to typically occur at the word / token level. However, in some cases, it may be
difficult to exactly define what is meant by a ‘word’ or ‘token’. This is particularly true
for an agglutinative language like Wolof.
Similar to Turkish (Oflazer et al. 2004), many derivational phenomena in Wolof take

place within a word form, but there are other complex derivations involving com-
pounds and reduplications (Ka 1994). Wolof word forms consist of morphemes con-
catenated to a root morpheme or to other morphemes. The language is almost ex-
clusively suffixing. In many contexts, the surface realizations of the morphemes are
conditioned by various morphophonemic processes such as vowel harmony, vowel
and consonant elisions, gemination, degemination, vowel coalescence, glide insertion,
prenasalization, etc. (Ka 1994).
Themorphotactics ofWolof word forms can be quite complex whenmultiple deriva-

tions and inflections are involved. For instance, the verb gënoonatee in (1) which con-
sists of different derivational and inflectional morphemes can be represented as in (2).

(1) Li
What

gën-oon-ati-a
SURPASS-PST-Iter-Cinf

metti
be.painful

‘Particularly painful was … ’

(2) gënoonatee⇔ gën+Verb+Modal+Past+Iter+A

This word starts out with a root gën ‘be better/worse’ followed by the past tense
marker -oon, the iterative suffix -ati and the infinitival complementizer a which sur-
faces as a clitic. The ending -atee results from a vowel coalescence process: the final
vowel of the suffix -ati is collapsed with the clitic a. Without derivation and inflection,
the contraction of the verb in (2) with the the infinitival complementizer (Cinf) a can be
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tokenized at least in two different ways: either by handling the clitic as a normal affix
integrated into the verbal stem (i.e. gëna) or by demarcating it from the stem (i.e. gën a).
Accordingly, a precise definition of the token concept in Wolof is required, before an
accurate tokenization system can be built for this language.
Throughout this research work, the definition of a token follows the one given for

Arabic by Attia (2007, p. 66): “the minimal syntactic unit; it can be a word, a part of a
word (or a clitic), a multiword expression, or a punctuation mark”. Accordingly, two
categories of tokens can be distinguished for Wolof: main tokens vs. sub-tokens. Main
tokens refer to stems with or without clitics, as well as numbers, which are typically
separated by white spaces and punctuation marks as delimiters or word boundaries.
Also, single character symbols like quotation marks and punctuation used in Wolof,
such as the period, comma, question mark, semicolon, etc., are treated as individual
tokens. In contrast, in some other cases (see Table 1), a stem may be suffixed with a
clitic, both represented as sub-tokens.

2.1 Wolof clitics
As discussed in the previous section, a challenging tokenization issue is cliticization.
Like Arabic (Attia 2007), Wolof morphotactics allows words to be suffixed with cli-
tics. Clitics themselves can be concatenated one after the other. Furthermore, clitics
undergo assimilation with word stems and with each other, making it difficult to rec-
ognize and handle them properly. Examples of full formwords consisting of stemswith
clitics are shown in Table 1. Assimilation can be observed in some of these examples.
The first row of the table is to be read as follows: the preposition ak ‘with’ may encliti-
cize to the verbal stem daje ‘meet’, yielding the surface form dajeek.² The other surface
forms involve different grammatical categories (determiners, conjunctions, pronouns,
etc.) and occur in a similar manner.

2.2 The use of multiword expressions
Another relevant tokenization issue is the use of multiword expressions (MWEs). For-
mally, MWEs can be defined as “idiosyncratic interpretations that cross word bound-
aries (or spaces)” (Sag et al. 2002, p. 90). More specifically, MWEs are “two or more
words that behave like a single word syntactically and semantically” (Attia 2007, p.
68). MWEs can be of different types, including idioms, prepositional verbs, verbs with
particles, collocations, etc. Following Attia (2007), Oflazer et al. (2004), and Sag et al.
(2002), Wolof MWEs are classified into four types: named entities, fixed expressions,
semi-fixed expressions and syntactically flexible expressions.

1. Multi-word named entities refer to proper nouns for persons, organizations,
places, etc., as illustrated in (3).

2 The long vowel ee in the surface form dajeek results from a vowel coalescence: the final vowel of the
verbal stem -e coalesces with the stem-initial vowel of the preposition, i.e. -a.
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Stem Clitic Example Word Literal
category form translation

Verb

PREP daje ‘meat’ + ak ‘with’ dajeek ‘met with’
DET joxe ‘give’ + ay ‘some’ joxeey ’give some’
Inf. COMP soog ‘start’ + a sooga ‘start to V’

Determiner PREP ba ‘the’ + ak ‘with’ baak ‘the with’
CONJ bi ‘the’ + ak ‘and’ beek ‘the and’

Preposition DET ci ‘in’ + ab ‘a’ cib ‘in a’
PREP ca ‘about’ + ak ‘with’ caak ‘about with’

Noun CONJ ndox ‘water’ + ak ‘and’ ndoxak ‘water and’
Name CONJ Ali ‘Ali’ + ak ‘and’ Aleek ‘Ali and …’
Adverb PRON fu ‘where’ + nga ‘you’ foo ‘where you …’
Complementizer PRON bu ‘if’ + nga ‘you’ boo ‘if you …’
Pronoun CONJ moom ‘him’ + ak ‘and’ mook ‘… and him’
Object pronoun Inf. COMP ko ‘him/her’ + a koo ‘him/her’ + inf. V

Conjunction AUX te ‘and’ + di imperf. tey ‘and’ + imperf.
DET mbaa ‘or’ + ay ‘some’ mbaay ‘or some’

Table 1: Examples of Wolof stems from different grammatical categories with clitic
sub-tokens

(3) Daara
school

ju
REL

Kowe
high

ji
DET

‘The University’ (Lit. ‘The school which is high’)

2. Fixed expressions denote collocations where all components of the collocation
are lexically, syntactically and morphologically rigid, as in (4). OtherWolof fixed
MWEs include adverbials saa su ne ‘every time’, and quantifying expressions bu
baax ‘very well’, etc. None of these MWEs can be reordered or separated by
external elements.

(4) Mag ak rakk ‘siblings’

3. Semi-fixed expressions refer to collocations where some components of the col-
location are fixed and some can vary.The variation can be of morphological (e.g.
inflectional or derivational) or lexical type (where one word can be replaced by
another). Wolof inflectional subject markers like maa ngi in (5) and noo ngi in
(6) are instances of semi-fixed expressions. They vary according to person and
number of the subject as well as the aspect of the verb, as illustrated in (5)–(6),
the optional attachment of the imperfective marker -y indicates the collocation
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being inflected for aspect. In contrast, (6) exemplifies a case of lexical variation,
where the word maa in (5) is replaced by noo.

(5) Maa ngi(-y)
1sg.PROG-IPF

dem
go

‘I am leaving (here and now)’
(6) Noo ngi

1pl.PROG
dem
go

‘We are leaving’

4. Syntactically flexible expressions are non-lexicalized expressions that can un-
dergo reordering or allow external elements to intervene between the compo-
nents of the collocation. For example, the MWE in (7) is disrupted in (8) by the
agreement marker na and the clitic pronoun ko.

(7) fas yéene ‘decide’
(8) fas na ko yéene ‘He has decided it’

Wolof multiword tokens can be of different grammatical categories: inflectional ele-
ments (5); adverbial expressions like bu baax ‘very well’ (10) and saa su ne ‘every time’
(9); prepositions like ci biir ‘inside’; pronouns such as yoo xam ne ‘that/which’; nouns
such as mag ak rakk ‘brothers’; quantifiers like ku ne ‘every one’; reduplicated words
like jékki jékki ‘suddenly’, and other units. Some Wolof examples including multiword
expressions are given in (9) and (10).

(9) Saa su ne,
Every time

noo ngi
1pl.PROG

nekk
be

ci biir
inside

kër
house

gi.
the

‘Every time, we are inside the house.’

(10) Ku ne
Every one

jékki jékki
suddenly

xàqtaay
laugh.out

bu baax.
very well.

‘Suddenly, every one laughs out loud.’

3 The Wolof tokenizer
This section describes the development of the Wolof tokenizer in finite-state technol-
ogy. Section 3.1 presents the language-independent tokenizer used in the early stage
of grammar development. Section 3.2 discusses the integration of language-specific
information into the tokenizer.

3.1 Language-independent tokenization
As noted above, in the early stage of grammar development, tokenization was car-
ried out by a language-independent FST. Typically, a language-independent tokenizer



62 Cheikh M. Bamba Dione

is a simple kind of deterministic tokenizer, i.e. an unambiguous finite-state transducer
which relies on simple heuristics and takes into account some general character classes.
For instance, it assumes that contiguous strings of alphabetic characters are part of one
token; likewise with numbers. Tokens are separated by whitespace characters (desig-
nated by the category WS), including e.g. space (SP) or line break (NL), or by punctuation
marks. Accordingly, the Token transducer (11) was defined as the union of sequences
of alphabetic characters (WORD), numbers (NUM), punctuation and some other symbols
(SYMB).

(11) define Token [WORD | SYMB | NUM];

In addition, a language-independent tokenizer generally needs to normalize white
space.This is because, in natural texts, the use of white spacemay be uneven and some-
times very inconsistent. For instance, one may find two or more white-space charac-
ters, including space, tab, newline characters, etc., instead of a single space. Similarly,
spaces might inadvertently be added before or after punctuationmarks.Therefore, nor-
malizing tools for eliminating such inconsistencies are needed at a preliminary stage
of tokenization. Normalizing the input before processing it allows for the separation
of concerns, because the input is assumed to be consistent before operations are per-
formed on it.
With the token definition (11), a language-independent tokenizer that inserts new-

lines to mark token boundaries (TB) can be compiled from the regular expression in
(12). It represents the composition of three simple replace terms.

(12) WS+ @-> SP
.o. Token @-> ... NL
.o. [WS]+ & $[NL] @-> TB

The first term in (12) reduces strings of whitespace characters into a single blank
using longest-match replacement.The second term inserts a newline as a token bound-
ary after the longest matches of letter sequences and other non-whitespace sequences.
The third term denotes a rule that removes a set of spaces by replacing it with a token
boundary. This set represents the intersection or conjunction of one or more spaces
and the set of strings that contains at least one instance of newline somewhere.
When the white space normalizer is fed an input like (13), in which additional spaces

are inserted and some spaces are misplaced, it corrects the errors and gives the output
in (14).

(13) Xale
child

yi
the.pl

lekk
eat

jën
fish

wi.
the.sg

‘So, the children eat the fish.’
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(14) Xale yi lekk jën wi.

When surface strings like (14) are looked up using this model, the output string is
the input string plus the multi-character symbols TB, inserted between tokens as in
(15).

(15) Xale yi lekk jën wi. ⇒ Xale TB yi TB lekk TB jën TB wi TB . TB

However, this language-independent tokenizer encountered serious problems with
respect to contracted words, hyphenated words and multiword expressions, as illus-
trated by examples (16) and (17). For instance, a MWE like Saa su ne in (9) was to-
kenized as shown in (16). However, in an appropriate tokenization model, it should
be tokenized as in (17), neglecting the space between the individual tokens when as-
signing token boundaries. Conversely, an appropriate model would identify the vowel
coalescence process involved in (18) and demarcate the collapsed vowels by inserting
a space between them, as shown in (19).
(16) Saa su ne ⇒ Saa TB su TB ne TB

(17) Saa su ne ⇒ Saa su ne TB

(18) gënoonatee ⇒ gënoonatee TB

(19) gënoonatee ⇒ gënoonati TB a TB

Accordingly, more sophisticated tokenization techniques were needed to account
for these non-trivial issues.

3.2 Integrating language-specific information into the tokenization pro-
cess

As a result of the tokenization problems in using a language-independent model, I de-
cided to integrate FST components for handlingMWEs and clitics into the tokenization
system. Similarly, preprocessing tools for text normalization were added. The final ar-
chitecture of the Wolof tokenization system is depicted in Figure 2.
As Figure 2 shows, the internal preprocessing workflow consists of a cascade of

transducers.Thus, during tokenization, the input is first normalized.Then string-based
multi-word identification for named entities, fixed expressions and semi-fixed expres-
sions is performed, allowing morphological variation for the latter MWE group. Next,
the input is normalized again in order to remove space and to lowercase the first word
in a sentence. After, clitics detection and demarcation are performed either determin-
istically by a clitic transducer, or indeterministically by a clitic guesser. Finally the
tokenized and normalized output is produced in two variants according to whether it
will be fed into the standard parsing system or the one based on CG disambiguation.
Note that the clitic transducer proposes analyses for contractedwords using very ba-

sic morphological information carried out by an internal component of the tokenizer.
For the standard parsing system, this step is non-deterministic and carried out by a
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Figure 2: Architecture of the Wolof tokenization system

clitic guesser, since the goal is to allow all possible tokenizations as candidates for syn-
tactic analysis. However, due to the nondeterministic nature of a guesser, there will
be increased tokenization ambiguities. In contrast, when parsing is combined with CG
disambiguation, this step is deterministic. Therefore, the clitics are not guessed, but
rather handled by a transducer carefully designed to produce unambiguous outputs.
The individual tokenizing and normalizing components are described in the next sec-
tions.
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3.2.1 Multiword transducer
Parsing MWEs requires “a deep analysis that starts as early as the normalization and
tokenization, and goes through morphological analysis and into syntactic rules” (Attia
2008, p. 70). Handling MWEs at the early preprocessing stage presents some advan-
tages in that it avoids needless analysis of idiosyncratic structures. Additionally, it
allows a reduction of ambiguity and parsing time. A precise treatment of MWEs is,
however, challenging in that it requires adequate strategies (Beesley and Karttunen
2003). For instance, with a naive model, multi-word tokens may be recognized even
when they are just part of a longer alphabetic string, leading to inappropriate tok-
enization. Therefore, the model used in the present work has been designed such that
it will handle them as accurately as possible.
Using regular expressions, a two-sided transducerwas created for handling the three

following types of MWEs: named entities, fixed expressions and semi-fixed expres-
sions.³ This transducer was then embedded in the tokenizer as described by Beesley
and Karttunen (2003).
In the first stage, finite-state networks including named entities (proper names, loca-

tions, organizations, etc.), fixed expressions and semi-fixed expressions were created.
The networks represent lists of words separated by space.The lists were created accord-
ing to the grammatical categories of the MWEs.⁴ For instance, for each part of speech
such as nouns, adverbs, prepositions, etc., a corresponding finite-state network was
built. Unlike named entities and fixed MWEs, the handling of semi-fixed expressions
needs some very basic morphological information (see Figure 2) due to morphological
variations. Such information was explicitly encoded in the tokenizer as an FST that
generates the possible inflectional forms for these MWEs before the final compilation.
In the second stage, a main MWE was built by concatenating all the different finite-

state networks created so far. In the third stage, special brackets (e.g. M1 and M2) were in-
serted around maximally long multi-word expressions, as shown in (20). Subsequently,
the main MWE transducer MWE1was integrated into the tokenizer, as illustrated in (21).
With this rule, the initial token concept given in (11) was redefined and augmentedwith
information about MWEs.

(20) define MWE1 [M1 MWE M2];

(21) define Token [WORD | SYMB | NUM | MWE1];

Finally, the rule in (22) was used to identify multi-word tokens on the basis of infor-
mation provided by the previous terms.This rule represents a composition of rules.The

3 Note that the MWE transducer was not responsible for the treatment of syntactically flexible expres-
sions, which are handled by theWolof grammar. As noted above, such expressions are not included in the
tokenizer, since their structures allow external (e.g. pronominal) elements to intervene. For more details
on how such verbs with particles are handled see e.g. Dione (2014b).
4 The lists included in the MWE transducer are of a moderate size and mostly include multi-word
tokens found in the corpus.
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first part in (22) considers MWE as those tokens delimited (bounded) by the elements
defined in (24). These consist of single character symbols SINGLE as defined in (23), or
whitespace or the boundary symbol.⁵ The second part in (22) then inserts a newline as
a token boundary after longest matches of letter sequences and other non-whitespace
sequences.

(22) define TOK1 [ MWE @-> M1 ... M2
|| Bound _ Bound
.o. Token @-> ... NL
.o. [M1|M2] -> 0

];

(23) define SINGLE [%"|%«|%»|%.|%,|%;|%:|%!|%?|%(|%)|%[|%]|%{|%}|%—];

(24) define Bound [SINGLE|WS|.#.];

The third part in (22) removes the special brackets around multiword expressions
when they are no longer used. However, as Beesley and Karttunen (2003) pointed out,
the brackets also need to be deleted from the sigma alphabet⁶ in order tomake the input
side of the resulting transducer match the universal language. This is accomplished by
(25), which explicitly ‘absorbs’ the auxiliary symbols into the unknown alphabet by
calling the Xerox substitute commands for each of the brackets used.

(25) substitute symbol ? for "<<"
substitute symbol ? for ">>"

With this extended tokenization model, a sentence like (26) will have the phrase
structure shown in Figure 3.

(26) mu
3sg

dem
go

ci
PREP

Daara ju Kowe ji
university

‘He went to the university’

3.2.2 Clitic transducer
In the extended model, tokenization is also expected to handle clitic boundaries. For
this purpose, a clitic transducer is embedded into the tokenizer, in a similar manner to
the MWE transducer. The clitic transducer has the functions of detecting and demar-
cating contracted morphemes and handling them as separate words. Yet information
on what may constitute a clitic is still needed. One possibility is to use a clitic guesser,
making assumptions about clitic occurrence and position in Wolof word formation.

5 The boundary symbol .#. denotes the beginning of a string in the left context and the end of the
string in the right context of a replace expression.
6 The sigma alphabet is the set of individual symbols known to the network.
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Figure 3: Phrase structure of (26)

For instance, joined words like baak (see Table 1) are decomposed into ba TB ak
TB. The long vowel aa is produced by a vowel coalescence rule which collapses the
final vowel of the determiner stem b- and the initial short vowel of the conjunction ak
‘and’. This kind of contraction is very common for Wolof determiners, demonstratives,
pronouns, etc., which take the noun class index (e.g. b, g, j, k, l, m, s, w, etc.).⁷ Thus,
abstracting from the noun class index, one can formulate a non-deterministic rule like
(27) which optionally inserts a token boundary between the collapsed vowels if the
morpheme aak is found at the end of a word.

(27) {aak} (->) [a] TB [a k] || _ [.#.|TB]

Such an operation may be particularly useful when applied to constituents like (28),
with the coordinated nouns tokenized as given in Figure (4).

(28) Petu
meeting

ma-ak
det-conj

yedd
lecture

ya-ak
det-conj

xuloo
dispute

ba-ak
det-conj

lépp
all

‘The secret meetings, the lectures, the disputes and all this’
Lit.: ‘The secret meetings and the lectures and the disputes and all this’

This solution, however, is based on a guessing mechanism which naturally increases
ambiguity due to non-determinism. Furthermore, since the CG disambiguator needs
unambiguous input, such rules cannot be included in the CG tokenizer. Also, because

7 Wolof is a noun class language with noun class agreement (McLaughlin 2010). The language has
approximately 13 noun classes identified by their index: 8 singular (b, g, j, k, l, m, s, w), 2 plural (y, ñ), 2
locative (f, c), 1 manner (n).
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Figure 4: Space insertion using the clitic transducer

cliticization can occur after several morphophonological processes, a proper treatment
of clitics needs, for example, morphological information related to verbal inflection and
all possible assimilations.
For this reason, a clitic transducer is integrated into the tokenizer. As illustrated in

Figure 2, the transducer is associated with an internal FST component that provides
basic morphophonological information, e.g. about the forms involved in word contrac-
tions as well as the contexts where these occur. For instance, the simplified finite-state
network in (29) contains the word stems of modal verbs and other verb operators in
Wolof (Church 1981). These stems are not guessed, but taken as a list of actual words
extracted from the morphological lexicon.
(29) define ModalStems [ {soog} | {mën} | {mas} | {bëgg} | {gën} | ... ];

Such information can be encoded in a finite-state transducer like (30), which repre-
sents the composition of the finite-state network Inflection with the transducer for
vowel coalescence vowCoal (both not displayed here).

(30) define InflModal [ModalStems Inflection] .o. vowCoal;

Using this information, a clitic transducer like (31) can then detect clitics and insert
space between the sub-tokens.

(31) define splitA a -> TB [a] || [.#.|TB]
[ModalStems | InflectedModal] _ [.#.|TB]
.o. ...;

In (31), a token boundary is unambiguously inserted between the stem of an option-
ally inflected modal verb and the complementizer clitic a found at the end of the verbal
string, as illustrated in (32) and (33).
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(32) gëna ⇒ gën TB a TB

(33) gënoonatee ⇒ gënoonati TB a TB

4 Text normalization
Besides the integration of language-specific information into the tokenizing trans-
ducer, the Wolof FST also includes text and word normalization components. Beesley
and Karttunen (2003, p. 440) define word normalization as “the general process of map-
ping accidental spelling variations to yield normalized forms for analysis”. Most com-
monly needed normalizations in natural-language processing are those that handle
initial capitalization (upper-casing) and whole-word capitalization. In Wolof, decapi-
talization at the beginning of a sentence has proven to be an important issue, as dis-
cussed in the next section.

4.1 The initial-capitalization normalizer
Besides the normalization of whitespace shown in section 3.1, decapitalization is a rel-
evant normalization issue for grammar engineering. As Forst and Kaplan (2006, p. 370)
noted, “the most important normalization when parsing free text is decapitalization at
the beginning of a sentence, but also after opening quotes, brackets, colons and hy-
phens”. Accordingly, the tokenizer includes a component for lower-casing accidental
spellings, which reflects the orthographical convention of capitalizing the first letter of
the first word in a sentence. This kind of normalization is carried out at two different
levels: the first word of the sentence is marked by the tokenizer and then lowercased
by the morphological analyzer. Note, however, that this normalization form does not
apply to proper names, which are considered as a special word category. Proper names
are entered in the lexicon with initial capital letter and this spelling will be preserved.
4.1.1 Normalization dependent on the tokenizer
At the tokenization level, the transducer in (34) is used tomark the first word of the sen-
tence. Such a word begins with a capital letter upper defined as a network that consists
of all the capital letters in Wolof. This word is expected to be found at the beginning
of a string (cf. the boundary symbol .#.) or after colons followed by one or more to-
ken boundaries and optionally symbols occurring before the first word of a sentence
(beforeFirstWord), e.g. quotes, dashes, parentheses, etc. Accordingly, the transducer in-
serts the caret symbol before that word.⁸ In this particular case, this symbol is used as
a hint for the morphological analyzer to identify the word marked as the first one of a
sentence.

8 The notation with an initial caret (or hat or circumflex) symbol ˆ follows the convention of encoding
feature-like multi-character symbols in Xerox finite-state systems (Beesley and Karttunen 2003).
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(34) define mark1stWord [ "\^{}" ... <- upper
[.#. | ":" TB* ]
beforeFirstWord* TB* _

];

4.1.2 Normalization dependent on the morphology
In order to lowercase the first word of a sentence, the Wolof morphological analyzer
described in Dione (2012) has been extended with the function in (35). Decapitalization
applies then for those words marked by the tokenizer with caret, indicating that they
were found at the beginning of the sentence.This function is designed such that it only
handles words marked as such, ignoring other words found somewhere else. It also
removes the caret symbol after decapitalization is performed by the downcase term.

(35) define MarkDowncased(X) [ [\"^"]* .o. X ]
| [ X .o. [ 0:"^" ( downcase ) ?* ]];

The downcase term denotes the inverse of the term upcase, as defined in (36).

(36) define upcase \> [ \> A:a|B:b|C:c|D:d|E:e|F:f|G:g|... ];

The term in (36) contains a number of pairs and represents the mapping of all upper-
case strings to the corresponding lowercase strings. It consists of ordered pairs <A,a>
of symbols A:a, where A is the upper-side symbol and a is the lower-side symbol. The
upper language is the infinite language of uppercase strings, the lower language con-
tains all the lowercase strings, and the term itself is a mapping that preserves the word.
Thus, if upcase contains <A, a>, the inverse relation upcase.i contains <a, A>.

In a final stage (37), the function MarkDowncased is applied to the main Wolof trans-
ducer WolMorph which represents all those words handled by the Wolof morphology.

(37) read regex MarkDowncased (WolMorph);

Using the normalizing transducer, the first word of the sentence in (14) will be low-
ercased, as illustrated by the tree on the left side of Figure 5. In contrast, the tree on the
right side, shows how the spelling of proper names likeMóodu in the sentenceMóodu
dem ‘Móodu left’ is preserved.

5 Evaluation
The tokenizer can be evaluated in the context of the standardWolof LFG parser (Dione
2014a) which makes use of the tokenizer to annotate free text. The performance of
the parser was measured on unseen natural text data consisting of 2354 sentences ran-
domly selected fromCissé (1994), Garros (1997) and Ba (2007).The parserwas evaluated
in terms of coverage and parsing quality. Coverage indicates whether the parser yields
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Figure 5: Normalizing the first word of sentence (14)

complete parses or not. Accordingly, the evaluation results given in Dione (2014a) re-
ported that the Wolof parser could find a complete parse for 1712 of the test sentences
(i.e. 72.72% coverage for complete parses).
For a direct evaluation of the tokenizer, 350 out of the 642 sentences that could not

be parsed were randomly selected to determine whether parsing failure was due to
erroneous tokenization. For 330 of them, this was not the case. Among the twenty
that failed due to tokenization errors, ten are due to inappropriate treatment of clitics,
mostly caused by vowel assimilation or complex derivation (e.g. reduplication); five
containmulti-word units, including names; two sentences contain all uppercase strings
like BUKKEEK «PERIGAM» BU XONQ ‘Hyena and its red «wig»’ which also involve
issues related to clitics and quotes; the rest consists of tokenization errors due to the use
of symbols and foreign language material as well as a mixture of the issues discussed
so far.
The problem of the multiword units is difficult to address without good lists of per-

son, place, organization and product names. In many cases, the tokenization problems
are caused by different issues. For instance, the clitic transducer erroneously inserted
a space between ja and ag in the string (38), considering both as determiners (i.e. ja
‘the’ and ag ‘a’), which might be correct in some contexts. In (38), however, Jaag is a
last name which can be treated either as an individual token or as a part of a multiword
expression, but not segmented into two strings. Adding this named entity to the list of
identified MWEs would help to avoid this kind of problems.

(38) Sàmba Jaag

Likewise, issues related to clitics are complex and need to be addressed in future
work on the tokenizer.
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6 Conclusion
This paper has presented a finite-state transducer for tokenizing normal Wolof text.
It has shown that the design of such a preprocessing tool involves non-trivial issues
related to the treatment of clitics, multiword expressions and text normalization. Ac-
cordingly, sophisticated techniques covering these issues have been integrated into
the tokenization model. Also, the paper has explained how the different preprocess-
ing components interact with each other and how tokenization and normalization are
closely connected to and sometimes dependent on morphological analysis.
However, as this paper acknowledges, there are open tokenization issues that need

to be addressed in future work. This includes, for instance, better handling of clitics
by integrating sophisticated techniques to control ambiguity caused by the guessing
mechanisms. Similarly, robust corpus-based approaches to multiword extraction need
to be combined with tokenization. Finally, future work on text normalization include
issues related to capitalization and haplology (Forst and Kaplan 2006).
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