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Abstract. In this article, I describe the derivation of dependency structures from LFG analy-
ses, with a focus on the Norwegian grammar NorGram. Although it is the f-structures that at a
first glance resemble dependency structures most, I show that c-structures are the correct start-
ing point for the conversion, and I outline a conversion algorithm that relies on information
from both c- and f-structure, the projection operator, and the grammar itself. The derived de-
pendency structures are projective with non-atomic relations, but can be converted into non-
projective dependencies with atomic relations, and further into Universal Dependency-style
structures. As an application, I describe how derived dependency versions of the NorGram-
Bank gold-standard treebank are used to train dependency parsers with acceptable precision.

1 Introduction
Lexical Functional Grammar (Bresnan 2001) is a theoretically motivated grammar for-
malism that allows the encoding of a very rich set of grammatical information. This
is exemplified by the Norwegian LFG grammar NorGram1, which has been used to
build a large treebank of automatically parsed and disambiguated sentences (NorGram-
Bank), including a smaller gold-standard treebank of manually disambiguated analyses
(Dyvik et al. 2016).
In contrast, many existing larger treebanks are manually or semi-automatically con-

structed,2 and they are expressed in more light-weight and less theory-driven for-
malisms, such as phrase-structure trees of the Tiger treebank type, or Dependency
Grammar. The latter formalism has recently gained much attention and popularity,
most notably through the Universal Dependencies (UD) initiative.3 The UD project
seeks to provide dependency treebanks for many languages (currently comprising 64
treebanks for 47 languages) in a comparable way, by using ‘universally’ agreed-on and
accepted coding guidelines and tagsets, while at the same time trying to keep a sensible
balance between divergent design goals (De Marneffe et al. 2014; Nivre, Marneffe, et

1 https://clarino.uib.no/redmine/projects/inesspublic/wiki/NorGram_documentation
2 Notable exceptions are the Redwoods and similar HPSG treebanks, which are constructed in a way
similar to NorGramBank, and the Alpino dependency treebank.
3 http://universaldependencies.org
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al. 2016). Among those goals are ease of comprehension also for non-linguists such as
language learners and engineers, on the one hand, and suitability for computer parsing
with high accuracy, on the other hand. The layout and distribution format of the UD
treebanks is such that they can readily be fed into a training pipeline for a statistical
parser, e.g. MaltParser (Nivre, Hall, et al. 2006), MATE (Bohnet 2010) or the Stanford
Neural Network parser (Chen and Manning 2014).

Even though it is still an open question how well such derived statistical parsers
perform compared to hand-crafted grammars, the idea is compelling: training a sta-
tistical parser from an existing treebank is much less time-consuming than develop-
ing a broad-coverage rule-based grammar. In addition, statistical parsers tend to be
more robust and operate at a much higher speed than rule-based (e.g. LFG or HPSG)
grammars.4 Even though statistical parsers cannot compete with detailed hand-crafted
computational grammars in terms of depth of linguistic analysis and richness of detail,
they are nevertheless potentially more suited for certain classes of applications where
a fine-grained syntactic analysis is not necessary, and speed and coverage are of higher
importance. Among such applications are data mining and information extraction of
various kinds.
Motivated by such considerations, and the desire to create a consistently annotated,

UD-compatible dependency treebank with relatively little effort, I describe in this arti-
cle a conversion algorithm from LFG to dependency structures of various types, and I
present the resulting dependency treebank and a spin-off product, a set of dependency
parsers for Norwegian Bokmål.
Two quite similar approaches to the conversion of LFG structures into dependency

structures have been described in (Øvrelid, Kuhn, et al. 2009) and (Çetinoğlu et al.
2010). Below, I will compare their approaches to the one I have chosen. The admittedly
more complex task of converting a dependency treebank into a treebank of LFG struc-
tures has also been performed (Haug 2012). Crucial to the success was the availability
of structural relations in the dependency structures of that particular treebank, the
PROIEL treebank (Haug and Jøhndal 2012), that go beyond what is generally coded in
dependency structures, namely secondary edges.
When going from LFG to dependency structures, enough structure should be avail-

able to allow the construction of the needed dependency relations. The question is
mainly which part of the rich LFG structure (c-structure, f-structure, the projection
relation between them) to base the conversion on, and which information to discard.
At a first glance, it is the f-structures that resemble dependency structures most.

Dependency structures can roughly be seen as impoverished f-structures, where all
attributes except the functional ones, corresponding to dependency relations, and all
structure sharing have been removed. Both Øvrelid, Kuhn, et al. (2009) and Çetinoğlu

4 This does not apply to dependency parsers that operate in the (rule-based) Constraint Grammar
framework (Karlsson 1990).
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et al. (2010) use this correspondence as the starting point for their conversions. This
correspondence is however not perfect; f-structure pred values cannot easily be re-
lated to surface words (which the dependency nodes should consist of), because the
projection relation is not injective.
Øvrelid, Kuhn, et al. (2009) solve this problem by introducing generic co-head edges

between the surface form contributing the pred value of the projected f-structure and
other surface forms that project to the same f-structure. Çetinoğlu et al. (2010) describe
a similar approach: they construct a modified f-structure, where every surface node
corresponds to a proper pred value. However, they give no detailed account of their
algorithms.
In contrast, I chose a conversion that starts with the c-structure, but exploits the

f-structure and the projection operator to arrive at the correct dependency relations
and labels.
The dependency relations that are the result of the algorithm that will be outlined

in Section 2 are peculiar in that they inherit a characteristic of the c-structures they
are derived from: they are projective, which c-structures trivially are. This entails that
the derived dependency relation labels are non-atomic in general; they are the con-
catenation of basic grammatical function relations, e.g. in the case of long-distance
dependencies. An additional transformation has to be performed to make all relations
basic, at the expense of projectivity, in order to arrive at traditional dependency struc-
tures. Both representations are equivalent and can be transformed into each other.
Even these non-projective dependency structures are quite different from depen-

dency structures that adhere to the Universal Dependencies coding guidelines. Our de-
rived dependency structures basically inherit their head-dependent relationship from
the functional relations in the LFG f-structure, which for NorGram analyses entails that
function words like (non-selected) prepositions, auxiliaries,5 modals and coordinations
(but not complementizers) are heads, having contentwords as dependents.These struc-
tures resemble quite closely the dependencies of the PROIEL–TOROT–Menotec family
of treebanks6 and the German TüBa-D/Z treebank,7 among others (disregarding rela-
tion names), although TüBa-D/Z treats coordination differently and more in line with
UD. In the UD initiative, on the other hand, a guiding principle is that heads should be
content words, whereas function words modify the head words. This design decision
was made to achieve a high degree of parallelism between dependency structures of
different languages.
In Section 2.6, I will outline how the non-projective dependency structures derived

from LFG analyses can be converted into UD-compatible structures.

5 Other LFG grammars might treat auxiliaries differently; e.g., in the English Pargram grammar, they
have no pred value on their own and merely contribute a feature to the f-structure.
6 See http://clarino.uib.no/iness
7 http://www.sfs.uni-tuebingen.de/de/ascl/ressourcen/corpora/tueba-dz.html
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Applying the mentioned conversion algorithms to an existing gold-standard LFG
treebank for Norwegian Bokmål, I derived a set of three dependency treebanks: one
consisting of projective structures, a second having non-projective structures with
atomic labels, and a third, UD-conformant dependency treebank.
All three treebanks were used to train statistical dependency parsers using the Stan-

ford Neural Network parser framework and the MATE parser tools.
The performance of the resulting parsers is comparable to the numbers mentioned in

the literature, with some interesting differences. I have, however, not tried to fine-tune
the tagset and the training parameters in order to maximize performance. Training
could also benefit from an improved gold-standard corpus.
In the conclusion, I briefly mention an application the trained parser has already

found in the domain of quotation extraction.

2 From c-structure to dependency
As stated in the introduction, although f-structures conceptually resemble dependency
structures (by interpreting sub-f-structures as dependency nodes and their pred values
as node labels, and taking f-structure attributes as dependency relations), they cannot
be converted into traditional bilexical dependency structures without resorting to c-
structure and projection information. There are several reasons for this.
Firstly, linear order information is not coded in f-structures, whereas the ordered

nodes of a dependency tree should mirror the surface word order of the analyzed sen-
tence. An ordering on sub-f-structures can only be imposed by relating them to nodes
in the ordered c-structure via the projection operator, and it is in many cases far from
obvious how this should be done. In addition, dependency node labels are exactly the
surface token strings of the sentence. F-structure pred values, on the other hand, are
in most cases the dictionary entry forms of inflected surface words, or other abstrac-
tions from the surface form. Here, the correct surface word form might be recoverable
by making use of the projection operator and other information coded in the internal
representation of the LFG analysis. In some cases, however, there is not even an easily
discernable trace of a surface form in the f-structure at all. These problems are exem-
plified in Figure 1, which displays a tentative dependency structure derived from an
f-structure for sentence (1). The possessive min ‘my’ projects to the predicate pro, the
selected preposition om ‘about’ is fused with the verb predicate drømme*om ‘dream
about’, and the demonstrative denne ‘this’ even gives rise to two pred values.

(1) Min
my

katt
cat

drømmer
dreams

om
about

dette.
this

‘My cat dreams about this.’
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pred ‘drømme*om⟨[1:katt],[2:pro]⟩’

subj
1

[
pred ‘katt’
spec poss pred ‘pro’

]

obl-th
2

[
pred ‘pro’
spec det pred ‘denne’

]
topic

[
1
]



drømme*om

subj
katt

spec.poss
pro

obl-th
pro

spec.det
denne

Figure 1: F-structure and derived dependency graph for (1)

For all these reasons, a more promising approach could be to derive dependency
relations directly from c-structures, using f-structure information solely to construct
relation labels.

2.1 The basic Lifting algorithm
In order to be able to state the algorithm that accomplishes this derivation (the Lifting
algorithm), we need to recall the notion of functional head (in the c-structure!). A
daughter node Y of a node X is a functional head (also called f-structure head) if Y
is annotated with the equation ↑=↓, or equivalently, Y and X share their features, or
Y and X project to the same f-structure. This notion is different from the X’-theory
concept of a c-structure head (e.g., N is the c-structure head of NP).
Let us first assume that every non-terminal c-structure nodeX has exactly one func-

tional head Y . Under this assumption, the Lifting algorithm is easy to formulate:

Lifting algorithm, basic version.
1. Recursively replace each non-terminal node by its functional head node. In other

words, lift each functional head node up to its mother node (which it replaces). Since we
assume that each non-terminal node has exactly one functional head, this procedure is
well-defined.
2. Label the edge between nodeX and daughter node Y with the f-structure path from

φ(X) to φ(Y ), where φ : C → F is the projection operator. If there is more than one
path (because of structure sharing in the f-structure) choose the path that consists of gram-
matical functions (that is, contains no discourse functions like topic or focus, but rather
subj, obj, adjunct etc.8). If there is more than one such path, choose the shortest one.
This is called the minimal path.

8 The complete list of grammatical functions in NorGram is: subj, obj, obj-th, obj-ben, obl, obl-th,
obl-compar, predlink, comp, xcomp, x, adjunct, null.
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Figure 2 shows some steps in the application of the basic Lifting algorithm for ex-
ample (2).9

(2) Hunden
the dog

sover.
sleeps

‘The dog sleeps.’

ROOT

IP

NP

N

Hunden

I’

Vfin

sover

ROOT

IP

Hunden I’

Vfin

sover

ROOT

sover

Hunden

sover

subj
Hunden

Figure 2: Steps in the application of the basic Lifting algorithm for the sentence (2)

2.2 Finding heads
In fact, all but the most basic c-structures violate the assumption of the basic lifting
algorithm: a c-structure can contain nodes with multiple functional heads or with-
out functional heads. Therefore, the Lifting algorithm has to be extended to such c-
structures.
In case of multiple functional heads, the idea is to turn all but one of them into

dependents, according to configurational details in the projected f-structure. We first
take a closer look at c-structure co-heads.
Most c-structure terminal nodes (word forms) straightforwardly project to an f-

structure whose pred value is the associated semantic form (the base form of nouns
and adjectives, and the infinitive with its subcategorization frame in the case of verbs).
This is expressed via an LFG functional equation of type (3) associated to the word
form, here hund ‘dog’.

(3) (↑ pred) =‘hund’

In some cases, however, the pred value is embedded deeper in the f-structure the
surface node projects to. This is true for determiners, whose pred value is embedded
in the projected f-structure along the path spec det, via equation (4). The same holds
for quantifiers, which are embedded along spec qant, and possessives (spec poss).

(4) (↑ spec det pred) = ‘denne’

9 In this and subsequent figures, straight lines are drawn between nodes and their functional heads,
whereas other c-structure edges are dotted lines.
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Determiners (as well as quantifiers and possessives) are also c-structure functional
heads, and their c-structure complements are f-structure co-heads, such that a c-
structure fragment (5) corresponding to the phrase denne hunden ‘this dog’, where all
nodes lie in the same functional domain, projects the f-structure (6). (Only the relevant
parts are shown.)

(5) DP→ D NP

(6)
pred ‘hund’

spec
[
det

[
pred ‘denne’

]]


The path from the projected f-structure to the associated pred value I call the em-
bedding path (spec.det in the above example). The embedding path is empty when
the pred value is at the top level of the projected f-structure. Clearly, among several
co-head nodes, we wish to turn those nodes that have a non-trivial embedding path
into dependents of the node with empty embedding path (if it exists), and their rela-
tions will basically be their embedding paths. Accordingly, in the example above, the
constructed relation will be (7).

(7) hunden

spec.det
denne

As we have seen, the embedding path of a lexical node cannot be deduced from the
c- and f-structures and the projection operator alone. Rather, it has to be extracted from
the functional equations attached to the lexical entry in the LFG grammar. Therefore,
the details of the outlined algorithm are dependent on the grammar the sentence was
parsed with.
There may also be lexical elements in the c-structure that are functional co-heads,

but have no corresponding pred value in the f-structure at all. Examples are selected
prepositions and punctuation marks. Here, we arbitrarily construct an embedding
path, which in the punctuation case will simply be punct, as in (8, 9) for the sentence
Kom! ‘Come!’.10 Selected prepositions will be dealt with below.
Even though coordinations are functional heads not associated with a pred value,

there is no need to give them special treatment, since they are never co-heads.

10 This example illustrates how the explicit subject information from the f-structure is lost in the con-
version.
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(8) ROOT

IP

I’imp

Vfinimp

Kom

EXCL-POINT

!

pred ‘komme⟨1:pro⟩’

subj
1

[
pred ‘pro’

] 

(9) Kom

punct
!

Now we are in the position to formulate the extended lifting algorithm:

Lifting algorithm, extended version.
1a. If none of the daughter nodes Y1, . . . Yn of nodeX is a functional head, replaceX

by the daughter nodes as direct children of the parent Z ofX , as illustrated in (10). Then
proceed as before.
1b. If more than one daughter node of X is a functional head, select the node with

shortest or empty embedding path as replacement for X . The remaining nodes will be
treated as dependents, their relations to X being their embedding paths.

1c. As a last resort, if there is more than one such node, select the first of them as
replacement.
2. Label the edge between node X and daughter node Y with the minimal f-structure

path from φ(X) to φ(Y ), concatenated with the embedding path of Y .

(10) Z

A X

Y1 Yn

⇒ Z

A Y1 Yn

It is immediate from the construction that the dependency relations constructed in
this way are projective dependencies; the sequence of words reachable from a given
node along dependency arrows has no gaps, and there are no crossing edges.
Figure 3 shows the application of both 1a. and 1b. for sentence (11).

(11) I dag
today

sov
slept

noen
some

barn
children

lenge.
long

‘Today some children slept long.’
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IP

ADVPloc

ADVloc

I dag

I’

Vfin

sov

S

QuantP

QP

Q

noen
[spec.det]

NP

N

barn

ADVPs

ADVs

lenge

1.⇒ IP

I dag I’

sov S

QuantP

noen
[spec.det]

barn

lenge

1b.⇒ IP

I dag I’

sov S

barn

spec.det
noen

lenge

1a.⇒

IP

I dag I’

sov barn

spec.det
noen

lenge

⇒ IP

I dag sov

subj
barn

spec.det
noen

adjunct.$
lenge

⇒ sov

adjunct.$
I dag

subj
barn

spec.det
noen

adjunct.$
lenge

Figure 3: Steps in the application of the extended Lifting algorithm for the sentence
(11). Nontrivial embedding paths are shown in brackets.

2.3 Words without pred values
Selected prepositions have no semantic value on their own and hence do not contribute
a pred to the f-structure, and they are functional co-heads. Such a selected preposition
gets an empty embedding path, which makes it the dependency head of the subordi-
nate clause, according to rule 1c.The relation is labeled ‘=’, indicating that the selected
preposition is not connected with a grammatical function, but merely acts as a medi-
ator between e.g. the comp relation and the subordinate clause, as in the analysis (13)
of sentence (12).

(12) Jeg
I

lurer
wonder

på
about

hva
what

fisken
the-fish

tenker.
thinks

‘I am wondering what the fish is thinking.’
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(13) lurer

subj
Jeg

comp
på

=
tenker

obj
hva

subj
fisken

punct
!

Commas are treated in the same way, for similar reasons.
Complementizers including the infinitival marker å have no pred value either; they

merely contribute a comp-form value to the f-structure. Here, the corresponding c-
structure labels (Cnom, Cinf etc.) are chosen as embedding paths.

2.4 Projective vs. non-projective dependencies
As we have seen, the dependency structures derived by the Lifting algorithm are pro-
jective dependencies that potentially have compound relation labels R = R1.R2 . . .

Rn.S, consisting of the concatenation of more than one grammatical function or set
inclusion Ri, and a possibly empty suffix S deriving from lexical embeddings.
This is not what dependency structures should look like. It is, however, relatively

straightforward to transform such projective dependencies into non-projective depen-
dencies without compound relation labels. The main idea is to move along the com-
ponent relations of a compound relation to find the new head of a dependent. Given
a relation X

R0.R1…Rn.S−−−−−−−−→ Y , there must also exist an atomic relation X
R0−−→ X1. The

node X1 corresponds to the c-structure surface node that gives rise to the pred value
in the sub-f-structure along R0 of the projection of X . Then we can replace the rela-
tion X

R0.R1...Rn.S−−−−−−−−→ Y by the relation X1
R1...Rn.S−−−−−−→ Y , and by applying this process

recursively we end up with a dependency structure Xn
Rn.S−−−→ Y (or Xn+1

S−→ Y )
without compound relation labels.
In the projective dependency structure for sentence (14) in Figure 4, there are two

compound relations.11

(14) Dette
this

vet
know

jeg
I

ikke
not

hva
what

jeg
I

skal
shall

si
say

til.
to

‘This I don’t know what to say about.’

The second of them, ‘hva xcomp.obj←−−−−− skal’, is resolved by replacing it with a re-
lation starting from the target ‘si’ of the xcomp relation, namely ‘hva obj←−− si’. The

11 In this and the following examples, linear display mode is chosen for the dependency analyses. This
mode is more suitable for longer examples, and it makes non-projectivity immediately visible through
crossing edges.
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other compound relation is resolved recursively, finally resulting in the relation
‘Dette obj:spec.det←−−−−−−− til’.
The outlined procedure assumes that the relation X

R0−−→ X1 is unique. However,
this can only be guaranteed for functional relations, in virtue of the LFG uniqueness
condition. If R0 denotes set inclusion (‘$’), any of the possible relations X

$−→ X’
(where X’ stands for the various set members) could be taken as replacement for
X

R0.R1...Rn.S−−−−−−−−→ Y . To avoid this problem, we label the set inclusions in the f-structure
with unique subscripts.
Finally, the relations are simplified if possible; the set inclusionmarker ‘$’ is removed

where it can be understood as implicit in the relation (e.g., adjunct.$ is reduced to
adjunct since adjuncts are always set-valued), suffixes are dropped (e.g., obj:spec.det
is reduced to obj), and relations from lexical embeddings are simplified (e.g., spec.det
is reduced to det).

Figure 4: Projective dependency structure with compound labels for (14)

Figure 5: Non-projective dependency structure with atomic labels

2.5 Secondary edges
In some variants of Dependency Grammar, it is possible to include secondary edges,
leading to structure sharing and dependency structures that no longer are trees, but di-
rected graphs. Such structures bear an even closer resemblance to f-structures, which
also are directed graphs. Secondary edges are typically used to code functionally bound
arguments of the subordinate verb in raising or equi constructions, or to code the sub-
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ject of a participle that modifies its own subject. In the latter case, the resulting graph
is even circular. In f-structures there is also structure sharing arising from discourse
functions (e.g., topic, focus), which could be modeled with secondary edges.
The construction of secondary edges, though not difficult in principle, is not yet

covered by the described or implemented algorithms.

2.6 Conversion to Universal Dependencies
As mentioned, UD-style dependencies differ from the dependencies described in the
previous sections (which I will call LFG-style dependencies in what follows) in the treat-
ment of function words: whereas copula verbs, auxiliaries, modals, prepositions and
coordinations are heads in the LFG-style dependencies, in the same way as they are
LFG functional heads in NorGram12 (with the exception of coordinations), function
words are never heads in UD dependencies; they connect via functional relations, in
the terminology of the UD project, to the content word. This means in concrete terms
that in order to transform LFG-style dependency structures into UD dependencies, the
function word head-dependent relations have to be inverted, and otherwise adapted.
This is done in an at least conceptually quite straightforward way by recursively

turning a function word (copula, auxiliary, modal, non-selecting preposition) into a
daughter node of the content word it heads (which amounts to reversing the head-
dependent relation arrow) and turning all remaining daughter nodes of the function
word into daughter nodes of the content word.
A special case are coordinations, which in the LFG-style dependencies derived from

NorGram analyses are binary branching and are heading two content words (or, re-
cursively, a content word and another binary coordination). In contrast, in UD coor-
dinations, it is the first conjunct that is considered the head of the coordinated phrase,
all other conjuncts being dependents. The coordinating conjunctions are attached to
the word following them. This configuration is in accordance with the UD principle to
give no function word head status; this asymmetric structure is, however, less elegant,
as it does not reflect the equal semantic status of the conjuncts in the phrase.
In addition to relation edges, the relation labels too have to be adjusted in this trans-

formation. The current version of the UD standard (UD v.2) recognizes 37 types of
syntactic relations, whereas there are around 45 relation types in the LFG-style de-
pendencies. In many cases, the UD and the LFG relations code syntactic functions at
a different level of detail, and there is no straightforward mapping from LFG-style to
UD-style relations. The concrete replacement of an LFG-style relation can depend on
morphological features, c-structure parent labels and f-structure attribute values, in
addition to the relation label itself. A typical example is the adjunct relation, which
translates to nmod if the adjunct is a noun phrase, to amod if it is an adjective, to
acl:relcl if the adjunct is a relative clause, and so on.

12 One should keep in mind that other LFG grammars might treat auxiliaries differently; e.g., in the
English ParGram grammar, auxiliaries only contribute with a feature to the f-structure.
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The outlined derivation procedure is exemplified in Figure 6, which shows the LFG-
style dependency structure for sentence (15) and the remarkably different UD-style
dependency structure derived thereof.

(15) Vi
we

skulle
should

ha
have

kjørt
driven

med
with

båt,
boat,

buss
bus

eller
or

bil.
car

‘We should have taken boat, bus or car.’

LFG allows certain types of multi-word expressions (MWEs), such as adverbials (i
dag ‘today’), complex prepositions (ved siden av ‘next to’) or named entities (Møre og
Romsdal), to be atomic surface nodes. In contrast, MWEs are syntactically analyzed in
UD; each component word represents a dependency node. UD distinguishes between
three types of MWEs: fixed expressions, flat exocentric semi-fixed expressions, and
endocentric analyzable compounds. Since MWEs recognized by NorGram reveal no
internal structure, I treat them uniformly as fixed expressions, even though named
entity MWEs arguably could be viewed as analyzable compounds with internal heads.
Hence, MWEs will be annotated by attaching all non-first components to the first com-
ponent via the relation fixed. This is shown for sentence (16) in Figure 7.

(16) Sogn og Fjordane
Sogn og Fjordane

ligger
lies

ved
at

siden
the side

av
of

Møre og Romsdal.
Møre og Romsdal

‘Sogn og Fjordane is situated next to Møre og Romsdal.’

3 Training a dependency parser
The INESS NorGramBank treebank is a set of treebanks analyzed with the Norwegian
LFG grammar NorGram, comprising around 5,5 million sentences (75 million words),
of which 4.7 million are in the Bokmål variant of Norwegian. 28,500 of the Bokmål
sentences havemanually disambiguated and controlled analyses, representing the gold
standard13, whereas the analyses of the remaining sentences are disambiguated using
a stochastic disambiguation module (Riezler and Vasserman 2004) that was trained on
the gold standard.
As outlined in the previous sections, there are three types of dependency structures

that can be derived from LFG analyses: projective and non-projective LFG-style depen-
dencies, and UD-style dependencies. These derivations were applied to the NorGram-
Bank gold standard, which resulted in three corresponding dependency treebanks.
In the experiment that I will describe in this section, those three treebanks were

used to train statistical parsers, whose performance was then compared, against each

13 The gold standard contains only correct analyses; sentences where the grammar provides only in-
correct analyses were not included.
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Figure 6: LFG-style and UD-style dependency structure for sentence (15)

other, and against a parser trained on the official Norwegian UD v1.4 treebank (20,000
sentences).14
Training of the dependency parsers was done using two different statistical depen-

dency parser frameworks: the Stanford Neural Network Dependency Parser, and the
graph-based parser from the MATE tools. As is usual, the treebank sentences were
randomly divided into training, development and test sets of relative sizes 8 : 1 : 1 for
each treebank. The training set had 18,859 sentences. The same training–test split was
used for all three variants of the treebank. The treebanks were exported in variants of
the CoNLL format, formats accepted by the parser training Java programs of the two
parser frameworks. As POS tagset, the lexical categories of the c-structure nodes were
chosen. Since the dependency parsers do not easily accept tokens with whitespace,
NorGramBank multi-word expressions had to be split into separate tokens. As POS
tags of the component tokens, the lexical category of the multi-word expression was
used, extended with an ‘/MWE’ suffix.
The parsers for the Norwegian UD v1.4 treebank were trained and tested on the

training, development and test sets included in the release. For both parser frameworks,
the standard training settings were used.
In addition to the training and development sets, the training algorithm for the Stan-

ford parser also needs a word embedding file, which contains distributed represen-
tations of the words of the language. This word embedding file for Norwegian was

14 See http://universaldependencies.org

http://universaldependencies.org
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Figure 7: Treatment of multi-word expressions in LFG-style and UD-style dependen-
cies for sentence (16)

created with the program word2vec,15 using as input the combined word tokens of
the corpora Norwegian Newspaper Corpus (newspaper text), forskning.no (popular sci-
ence) and Talk of Norway (parliamentary debates), with more than 1.58 billion tokens
altogether.16
Theobtained precision for the parsers trainedwith the different treebanks and parser

frameworks is given in Table 1, in terms of Unlabeled Attachment Score (UAS) and
Labeled Attachment Score (LAS). In addition, the percentage of sentences with fully
correct (unlabeled and labeled) attachment is given in parentheses. Both training and
testing was done on pretokenized and POS-tagged input using the gold-standard POS
tagset.
There is a striking difference between the parsers trained with the Stanford frame-

work and with MATE: the MATE parsers perform much better. This is consistent with
observations in the literature, where MATE is among the best performing parsers in
many comparisons, e.g., Lavelli (2016) and Choi et al. (2015). However, the difference
is much higher for the parsers trained on the UD v1.4 Norwegian treebank than for
those trained on the LFG-derived treebanks, a fact that I cannot offer an explanation
for.

15 https://code.google.com/archive/p/word2vec/
16 See http://clarino.uib.no/corpuscle

https://code.google.com/archive/p/word2vec/
http://clarino.uib.no/corpuscle
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Stanford NN MATE
Treebank UAS LAS UAS LAS
LFG-proj 91.67 (65.72) 89.30 (57.41) 93.81 (71.51) 90.82 (61.58)
LFG-nonproj 91.04 (62.44) 89.30 (57.11) 93.63 (71.77) 91.46 (57.54)
LFG-UD 90.71 (61.41) 88.86 (56.26) 93.84 (70.06) 91.83 (60.09)
UD v1.4 80.58 (38.32) 76.74 (29.04) 91.60 (56.27) 89.26 (45.49)

Table 1: Obtained precision for parsers and treebanks in terms ofUnlabeled Attachment
Score (UAS) and Labeled Attachment Score (LAS)

The MATE parser trained on the UD v1.4 treebank performs reasonably well; the
scores are comparable to those reported by Øvrelid and Hohle (2016), who give a UAS
of 91.21 and a LAS of 88.54 for MATE trained on the UD v1.2 treebank.
They note a significant difference with the scores reported by Solberg et al. (2014) for

the NorwegianDependency Treebank (NDT, the treebank that the Norwegian UD tree-
banks were derived from), who give a UAS of 92.84 and a LAS of 90.41 for MATE with
default training settings and gold-standard POS tags. As they comment, this difference
can at least partially be accounted for by the fact that the NDT annotation principles
differ from those in UD in some important details: Whereas UD treats prepositions
as dependents of the prepositional complement and auxiliaries as dependents of the
lexical verb, they are heads in NDT.
We do not see a comparable difference in the performance of the parsers derived

from the LFG non-projective dependencies and the UD-style treebanks.
The parser derived from the projective LFG-style dependencies shows a significantly

lower LAS than those derived from the non-projective and the UD-style treebanks,
which is probably due to the higher number of (non-atomic) relation labels in the
projective case.
The scores for the MATE parsers trained on the LFG-derived treebanks may seem

to be quite high; these good results should however be viewed critically. The LFG-
derived UD treebank and the UD v1.4 treebank are not directly comparable, as the
former contains significantly shorter sentences in average, which should make the
parse process easier.17

It would have been interesting, and perhaps revealing, to test the LFG-derived UD
parser on the UD v1.4 treebank test set, but since the treebanks use incompatible POS
tags, this cannot be done.

17 The average length of the NorGramBank training sentences is 11.05, with a standard deviation of
5.15, whereas the average length of the UD v1.4 treebank training sentences is 14.81, with standard devi-
ation 8.93.
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4 Conclusion
This paper shows how three different types of dependency structures can be derived
fromLFG analyses, with the c-structure as starting point. All three types of dependency
structures can be viewed on the web interface to the XLE parsing framework XLE-
Web.18 When a Norwegian sentence is parsed in XLE-Web, its NorGram LFG analysis
is shown, alongside with a dependency structure of a chosen type.
One of the dependency parsers, namely the Stanford NN parser trained on the LFG-

proj treebank, has already found a successful application in a quote extraction task
(see Salway et al. 2017). In this text mining application, Norwegian newspaper articles
were analyzed with the parser, and sentences that contained a speech verb having a
politician’s name as its subject, or a subject anaphore that could be resolved to a politi-
cian’s name, were extracted. The sentence complements in the extracted constructions
were the desired indirect quotes.
The conversion algorithms described in this paper, in particular the conversion to

UD-style dependencies, still need some refinement: some relation types, as well as
complex constructions such as comparatives and ellipsis, have not been covered yet.
The implementation of secondary edges and the corresponding conversion to UD

enhanced dependencies is also left for future work. No attempt has been made to syn-
chronize the POS tags with Universal POS tags.
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